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Abstract— The use of automated image analysis for 

monitoring wildlife interactions with marine renewable 

energy infrastructure can vastly reduce the time required to 

extract usable data from underwater imagery compared to 

manual expert processing. We present a novel industry-

ready image processing workflow for automated wildlife 

detection developed using 1000+ hours of underwater video 

footage obtained by Nova Innovation Ltd. from their 

operational tidal stream turbine array at Bluemull Sound in 

Shetland, Scotland. The workflow includes object detection 

through advanced image analysis, image classification 

using machine learning, statistical analyses, and automated 

production of a summary report. Blind tests were 

undertaken on a subset of videos to quantify and iteratively 

improve the accuracy of the results. The final iteration of the 

workflow delivered an accuracy of 80% for the 

identification of marine mammals, diving birds and fish 

when a three-category (wildlife, algae, and background) 

classification system was used. The accuracy rose to 94.1 % 

when a two-category system was used, and objects were 

classified simply as ‘target’ or ‘non-target’. The accuracy and 

speed of the workflow can be improved through expanding 

the initial training dataset of images with different species 

and water conditions. Application of this workflow 

significantly reduces manual processing and interpretation 

time, which can be a significant burden on project 

developers. Automated processing provides a subset for 

more focused manual scrutiny and analysis, while reducing 

the overall size of dataset requiring storage. Auto-reporting 

can be used to provide outputs for marine regulators to meet 

monitoring reporting conditions of project licences.  
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I. INTRODUCTION 

NVIRONMENTAL interactions of marine renewable 

energy (MRE) projects are challenging and costly to 

monitor, and questions remain about their potential effects 

on the physical and biological environment [1]. This 

uncertainty and the paucity of monitoring data from MRE 

projects increases the perception of risk about potential 

impacts which can confound regulatory decision-making 

and hamper efficient consenting (permitting) of projects 

[2]. A key concern and consenting risk for tidal energy 

technologies is the potential for injury to marine wildlife 

through collisions with moving parts of turbines [3]. To 

understand the real nature of this risk, information on 

animal presence and behaviour around operational tidal 

turbines is required [4, 5]. 

Large volumes of underwater imagery can be collected 

in a short time using submarine cameras, but there is a 

bottleneck at the processing stage required to extract 

usable biological and environmental data from imagery 

[6].  Manual image processing is also subject to observer 

bias, with inconsistency generated among and within 

observers [7].  Therefore, the automated processing of 

large volumes of environmental data acquired from 

submarine monitoring and the use of machine learning 

algorithms like convolutional neural networks to identify 

the presence of marine wildlife with MRE infrastructure 

are powerful tools for assessing the environmental 

response to MRE infrastructure [8].  

A dataset of underwater video footage obtained by 

Nova Innovation Ltd. from their operational tidal stream 

turbine array at Bluemull Sound in Shetland, Scotland was 
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used to develop a workflow and associated algorithms to 

automatically filter many hours of underwater video, 

remove unwanted footage, and extract only video 

containing marine mammals, diving birds or fish. 

Nova Innovation’s Shetland Tidal Array at Bluemull 

Sound (Fig. 1) was the world’s first offshore tidal energy 

array. The project has been operational since 2015, 

powering the Shetland grid and delivering reliable, 

predictable power to homes and businesses. Following the 

success of the first three turbines and the resulting positive 

impact on the local economy and Shetland’s carbon 

emissions, Nova doubled the capacity of the Shetland 

Tidal Array to six turbines. 

Nova’s M100-D tidal turbine is a 2-bladed, horizontal 

axis device which uses gravity-based foundation that sits 

on the seabed. It is approximately 14m in height, with a 

rotor diameter of 8.5m (Fig. 2). Nova has a regulatory 

obligation to monitor and report on the presence of 

wildlife in proximity to its turbines to Marine Scotland 

under conditions of the project licences. To do this, it uses 

motion-detection triggered video cameras mounted to the 

turbines. To date, Nova has recorded fewer than 30 

occurrences of diving birds or marine mammals close to 

the turbines in seven years of operation, while fish of the 

genus Pollachius are relatively common. However, 10s of 

1000s of hours of submarine video footage have been 

recorded, which is often triggered by the motion of marine 

algae and other superfluous marine detritus in the tidal 

current.  

This presents a processing and analysis, and data 

storage challenge whereby the majority of video footage 

contains unnecessary information, requiring manual 

review to identify and record the presence of marine 

wildlife of interest (mammals, diving birds and fish). Time 

spent reviewing hours of underwater footage has an 

associated monetary and resource cost to Nova which 

could be better distributed elsewhere. It also restricts the 

proportion of the total dataset that can be sampled and 

analysed. Therefore, the development of an automated 

process to automatically scan and filter video files, identify 

frames which contain wildlife of interest and produce 

statistical analyses in an auto-generated report is 

extremely valuable to both MRE developers and 

regulators.  

II. METHODS 

A. Nova Innovation dataset 

Two sets of videos were received from Nova Innovation 

from its turbine-mounted cameras at the Shetland Tidal 

Array. Dataset A comprised videos recorded in November 

2015, whilst videos from dataset B were videos from March 

to April 2016. Videos were obtained from motion-

triggered cameras that were positioned on the side and top 

of the first installed turbine (the camera position will 

hereinafter be referred to as T1SIDE and T1TOP, 

respectively). Each video comprises a few seconds of 

footage before the initial motion was detected to ensure the 

entire interaction was captured. The lengths of the videos 

ranged from 10 seconds up to 15 approximately minutes. 

Dataset A exhibited a large amount of wildlife occurrences 

consisting of seals, diving birds and shoals of fish, whereas 

dataset B had relatively limited wildlife occurrences with 

just a few occurrences of diving birds and fish. The videos 

were of varying quality based on luminosity and hue of 

background (e.g. blue or green), turbidity and clarity of the 

water column, and degree of biofouling on the lens or close 

to the camera. There were a total of 263 and 668 videos 

from the T1SIDE and T1TOP positions, respectively, from 

dataset A, whereas dataset B contained 102 and 90 videos 

from the T1SIDE and T1TOP positions, respectively (Table 

1).  

 

B. Machine learning model  

 The machine learning model used here is a pretrained 

convolutional neural network called EfficientNet [9], 

which is widely used for image classification tasks as it has 

 
Fig. 1.  Map of the location of Nova Innovation’s Shetland Tidal 

Array site at Bluemull Sound between the islands of Yell and Unst. 

(Image provided by Nova Innovation Ltd.)  
  

 
Fig. 2.  Image showing size and scale of Nova’s M100-D tidal 

turbine (Image provided by Nova Innovation Ltd.)   
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learned representations for a variety of real-life objects. 

The model was trained further on our dataset to enable it 

to correctly identify videos containing wildlife occurrences 

[10]. 

C. Model training, validation and testing  

Videos from dataset A were used in model training, so 

were manually labelled and sorted into three categories of 

‘wildlife’, ‘detritus’ and ‘background’ depending on the 

content. The ‘wildlife’ category consisted of videos 

containing seals, diving birds and fish, whereas the 

‘detritus’ category contained objects such as large kelp or 

small pieces of unidentifiable plant-like detritus. The 

‘background’ category was for videos that did not contain 

any objects of interest (i.e., contained no wildlife or 

detritus). 

Videos from dataset A were sorted into further groups 

to use for model training or validation, respectively. Some 

videos from dataset B containing diving birds were used 

to supplement the training and validation process given 

the limited number of videos containing wildlife 

occurrences.    

Model testing was conducted on videos from dataset B 

as it contained videos from a different temporal period and 

was deemed different enough to combat bias to the 

training datasets. Prior to testing the model, videos from 

dataset B were manually labelled to categorize videos into 

‘wildlife’, ‘background’ or ‘detritus’ to determine the 

success of the model (Fig 3). However, due to many videos 

being 15 minutes long in dataset B, a sampling method of 

watching 5 seconds of video every 30 seconds was used in 

the labelling process.  

 

 
Fig 3. Examples of marine wildlife captured by motion-detection 

turbine-mounted cameras at Nova Innovation’s Shetland Tidal Array, 

Bluemull Sound, Shetland, which were used in model training. A) 

Grey Seal, B) European Shag, C) Individual fish close to camera D) 

Large shoal of fish in the distance. 

 

D. Statistical analysis and auto-report generation 

To improve the efficiency of reviewing model results 

and to provide a tool to assist in Nova Innovation’s 

reporting obligations under project licences, an auto-

generated results report was created. The report contained 

the videos identified by the model to contain wildlife 

interactions and some statistics. Six frames per video were 

generated to include in the report, which was found to be 

a sufficient number of frames to capture a snapshot of the 

interaction with the turbine. The number of frames can be 

adjusted to suit the purpose of the report. The number of 

videos identified to contain wildlife interactions, as well as 

the amount of storage space potentially saved by using the 

model, is also included in the report (Fig 4). There are 

several additional statistics that could be calculated within 

the automated workflow and included the report. For 

example, a time analysis of the number of interactions 

recorded per month or season, or the frequency of bird 

detections in relation to fish presence.

 
Fig 4. Example of statistics included in the final report. The data 

size (amount of storage) in green and the number of files in blue 

extracted from dataset B through applying image classification. 

III. RESULTS 

E. Three categories (wildlife, algae, background) 

The model had good results when tested on unseen 

videos (dataset B). Out of 15 videos containing wildlife 

interaction, 12 (80.0 % accuracy) were correctly identified 

to contain wildlife (Fig. 5), one video was wrongly classed 

as ‘background’ and two videos wrongly classed as 

‘detritus’. The model struggled to differentiate between 

the ‘background’ and ‘detritus’ categories, with 71 out of 

74 videos wrongly identified as containing detritus and the 

remaining 3 videos wrongly identified as containing 

wildlife. The model therefore had a 0 % accuracy for the 

TABLE I 

VIDEO DATASETS OF WILDLIFE INTERACTIONS WITH TIDAL TURBINES 

OBTAINED FROM NOVA INNOVATION LTD.  

Dataset Camera Position Number of Videos 

A T1SIDE 263  

 T1TOP 668 

B T1SIDE 102 

 T1TOP 90 

 

A B 

C D 



PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3–7 SEPTEMBER 2023, BILBAO 623-4 

‘background’ category. The model performed well in 

detecting detritus, correctly identifying 59 out of 61 videos 

with detritus present (96.7 % accuracy). The remaining 2 

videos that contained occurrences of detritus were 

incorrectly identified as containing wildlife. Overall, 5 out 

of 135 videos were wrongly identified to contain wildlife 

where they belonged to the ‘background’ or ‘detritus’ 

categories. The ability of the model to differentiate 

between the ‘background’ and ‘detritus’ categories is 

discussed further below.  

 

 
Fig 5: Model results for detecting 'wildlife' (Animals), 'detritus' 

(Plant) and 'background' (BG) categories in unseen videos.  

 

F. Two categories (target and non-target) 

As it was not a priority for Nova Innovation to 

differentiate between types of videos that contained false 

positives (i.e., no wildlife interactions), the model results 

on dataset B were re-evaluated against two new categories: 

‘target’ and ‘non-target’. Videos previously labelled as 

‘background’ and ‘detritus’ were grouped into the ‘non-

target’ category and videos previously labelled as 

containing ‘wildlife’ were attributed to the ‘target’ 

category. Against the new category conditions, 94.1 % of 

videos were accurately identified as either ‘target’ or ‘non-

target’ by the model.  

 

IV. DISCUSSION 

G. Model performance 

With the rapid development of MRE infrastructure to 

combat the threat of climate change, and meet increasing 

energy security demands, automated processing of large 

volumes of environmental data and the use of machine 

learning algorithms could become essential tools in 

monitoring marine wildlife responses to MRE 

infrastructures, such as tidal turbines.  

The use of convolutional neural networks proved to be 

effective in identifying seals, diving birds and fish from an 

operational tidal stream turbine at Bluemull Sound in 

Shetland. With 80% of targets correctly identified as 

wildlife, the model provides an operationally ready 

solution for Shetland (or similar ecosystems) to aid in 

understanding the impacts of tidal turbines on local 

marine life. The model also provides a solid foundation to 

improve detection accuracy, through increased training on 

videos from the same temperate environment, and to 

extend model capabilities through including training data 

from other tidal stream environments with different fauna 

present.  

 Two out of three videos containing wildlife that were 

incorrectly labelled by the model as ‘background’ or 

‘detritus’ had fish present. Kelp fronds that had become 

entangled around the turbine structure would regularly 

trigger the motion-detection camera and were common in 

videos in both the training and testing datasets. It is 

possible that dense shoals of fish around the periphery of 

the camera, which were less common in training data, 

were mistaken by the model for entangled kelp. Through 

increasing the amount of training footage of fish in a 

variety of environmental parameters and shoal structures, 

model accuracy can easily be improved. The remaining 

video that was incorrectly labelled by the model to not 

contain any wildlife in fact contained a diving bird. It is 

likely that the video with the diving bird was not detected 

by the model due to the green colouration of the water 

column. Due to the limited occurrences of birds in the 

training data, birds often appeared in water column with 

blue colouration in the training dataset. Therefore, training 

the model on more instances of birds in a variety of 

environmental conditions would improve model results in 

this case. 

 There were a total of five videos out of 135 that belonged 

to the ‘detritus or ‘background’ categories that were 

mislabelled as ‘wildlife’ by the model. Two videos were 

occurrences of macroalgal detritus, three videos belonged 

to the ‘background’ category and one video contained a 

small remotely operated vehicle (ROV). It is likely that the 

model misidentified these videos due to the unique shape 

of the macroalgal detritus and the ROV appearing as a 

small, dark object similar to that of a diving bird.  

H. Future work  

Although the success rates for three and two category 

identification are good, model accuracy can be improved 

through increased training data with a variety of shapes 

and sizes of detritus and wildlife. More images of the key 

wildlife groups of interest such as diving birds, marine 

mammals and fish are required to expand the training 

dataset and increase the model accuracy. In addition, the 

model can be extended or trained on different ecosystems 

and water quality conditions to increase versatility of the 

tool.  

Currently, the model is applied as a post-processing 

workflow on batches of videos. Further work could 

include integrating the developed method into the 

turbines themselves so that data is processed in situ to aid 
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real-time reporting and automated detection of wildlife. 

Integration of this workflow with automated passive 

acoustic monitoring systems linked by underwater and 

satellite communication systems can provide a holistic and 

complimentary approach using both visual and acoustic 

data for environmental monitoring. 

V. CONCLUSION 

This study successfully demonstrated the effectiveness 

of using machine learning model to automate the detection 

of wildlife in proximity to MRE infrastructure delivering 

significant efficiencies in the analysis and reporting for 

MRE monitoring programs.  The model developed in this 

case study achieved an accuracy of 94.1 % in identifying 

videos within the ‘target’ (‘wildlife’) category and ‘non-

target’ (‘background’ and ‘detritus’) category. The model 

has been integrated into a novel, industry-ready workflow 

that can ingest approximately 200 videos or 20 hours of 

footage and produce an automated detection report of the 

results in approximately 30 minutes. When using a manual 

approach, it takes approximately 320 person-hours of 

analysis for 1600 hours of video. By comparison, this 

automated workflow could analyse 1600 hours of video in 

40 hours resulting in an 87.5% reduction in interpretation 

time.   

The use of machine learning for automated processing 

provides a subset of data for more focused manual 

scrutiny and analysis, while reducing the overall size of 

the dataset requiring storage. This facilitates analysis of a 

much greater proportion of data and addresses the 

growing challenges of marine operators’ data storage 

requirements. 
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