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Abstract—Fossil fuels are the main cause of global 

warming and threaten our survival. Tidal turbines can 

supply renewable energy and fight climate change. Whereas 

large scale of installation will lower the levelized cost of 

tidal energy to EUR100/MWh, making ocean energy 

competitive with other renewable energy sources like 

offshore wind. To achieve the target, increased performance 

and reliability of tidal energy devices are required. Tidal 

turbine blades are one of the primary component of tidal 

turbines, and can experience complex non-linear damage 

modes. Tidal blades can fail catastrophically due to impact 

damage, delamination, matrix crack, fibre breakage or 

rupture, and others in harsh marine environments. Thus, 

tidal energy companies must ensure blade health and 

performance. In the sea, fault diagnosis and maintenance 

are difficult, and if left unattended, the tidal energy system 

may fail. Therefore, we proposed real-time and reliable 

structure health monitoring (SHM) tidal blades. We 

addressed the trustworthiness of system decisions made 

with explainable artificial intelligence (XAI), which is 

recommended approach by EU for utilization of AI. This 

paper presents a real-time damage detection framework, 

ICT-based infrastructure for real-time monitoring, and a 

novel model to classify/detect blade structure damages. 

Testing and evaluation of proposed approach in laboratory 

and operational settings is the future concern of this study. 

 

Keywords—tidal energy turbines, structure health 

monitoring, explainable artificial intelligence.  

I. INTRODUCTION 

LOBAL warming is a concern as the earth's 

temperature rises 0.08°C per decade [1]. Fossil fuels 

are a major contributor to global warming and threaten 

our survival. For years, engineers and scientists have 

studied alternative electricity generation methods to 

reduce CO2 emissions [2]. Renewable energy is eco-
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friendly and accessible [3]. Thus, renewable energy 

solutions and cost-effective, reliable clean energy must be 

prioritized [4]. Tidal energy turbines can help meet global 

clean energy and climate needs. Europe leads tidal energy 

with 30 MW installed by 2020 [5]. Due to the harsh 

operating environment, tidal energy system rotors and 

blades might degrade and fail. The Sustainable and 

Resilient Structures research group at University of 

Galway uses finite-element analysis and computational 

fluid dynamics to improve tidal turbine blade design. 

Other research groups are optimizing tidal blade 

structures and control technology ([6][7]). (e.g. [8]). A 

large-scale structural testing of tidal turbine blades and 

components in recent years to ensure blade structural 

integrity before deployment. A 3/8th-scale blade 

component and rotor portion for the Open-Hydro 

prototype tidal turbine were fatigue-tested in 2017 [9]. In 

2020, a static and cyclical testing program was completed 

on a helical foil for tidal turbines [10] and an advanced 

structural testing program on a full-scale blade for the 

Orbital Marine Power tidal turbine, which included 

fatigue cycles for 20 years of operation. The latter was 

static-tested at about 1,000 kN [11]. Other studies have 

created and performed laboratory accelerated life testing 

on the tidal turbine's generator shaft and support structure 

to measure fatigue performance [12]. Design techniques 

and full-scale laboratory testing are helping enhance tidal 

turbine rotor and blade reliability and efficiency. Tidal 

energy is slowly developing compared to other 

renewables.  

Most previous research works have concentrated on 

optimizing tidal turbine designs [13][14], although 

component health monitoring is essential for reliable 

operations. Wind turbine structure health monitoring is 
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well-established [15]. Despite design similarities, tidal and 

wind power turbines operate in different environments 

[16]. Tidal energy turbines cannot employ most wind 

turbine SHM methods. Tidal energy turbine SHM has been 

studied recently. A research [17] emphasizes the 

requirement for SHM to detect damage during tidal 

turbine operation, including misalignment, imbalance, 

looseness, broken gear teeth, bearing problems, lubrication 

fluctuation, dry contact with spinning surfaces, and 

excessive wear. Some researchers already tested their 

technologies in the field (for example [18]). A recent study 

proposes predictive monitoring for subsea power 

producers (permanent magnet synchronous generators) to 

minimize the chance of catastrophic failure [19]. This study 

focuses on tidal generator SHM. Many of the fractures that 

can contribute to tidal blade structure deterioration have 

been experienced and reported from tidal energy devices 

deployed in real sea conditions, such as connection 

failures, water ingress reducing fatigue life, blade edge 

erosion, biofouling, and higher blade loads than expected. 

Tidal turbine performance, dependability, availability, 

maintainability, and/or survivability have decreased. 

Existing real-time SHM methods also ignore key factors. 

Thus, there is an urgent need to design and implement 

quick, reliable, and robust real-time SHM systems on both 

new blades going into the sea and equipment on existing 

turbines to improve reliability and performance over the 

whole tidal turbine life in complicated ambient tidal 

circumstances. To receive real-time information, you also 

need a solid ICT infrastructure, and ensuring the 

trustfulness ot system responses such as inclosure of 

sensor systems to be employed in real-time for monitoring 

the material state of composite materials, as well as sensor 

data dependability, creating a massive cloud-based 

composite materials database that includes all material 

characteristics SHM and prognostics data. Also, it is 

necessary to build data-driven adaptive AI models to 

detect damages, as well as continuous learning methods to 

forecast unknown breakdown events. To speed up the 

process, integrate data-driven AI models with transfer 

learning and multi-task learning techniques can also be 

useful. Additionally, ensurance the trustworthiness is an 

essential element, for that reason a novel method, which 

could ensure the reliability and trustworthiness of the 

system’s decision, such as informing the user about the 

rationale of the black-box decision provided by the system 

is mandatory. The primary concern is transparency to the 

results, where state-of-the-art XAI techniques, for 

example, transparent model, model-specific explanations, 

and existing composite material failure theories to develop 

explanation criteria of several structure conditions of the 

tidal blade. The explanation of the decision are defined 

using the interpretability approaches such as visual, text, 

or numerical modeling feedback. 

Most previous research works have concentrated on 

optimizing tidal turbine designs [13][14], although 

component health monitoring is essential for reliable 

operations. Wind turbine structure health monitoring 

(SHM) is well-established [15]. Despite design similarities, 

tidal and wind power turbines operate in different 

environments [16]. Tidal energy turbines cannot employ 

most wind turbine SHM methods. Tidal energy turbine 

SHM has been studied recently. A research [17] 

emphasizes the requirement for SHM to detect damage 

during tidal turbine operation, including misalignment, 

imbalance, looseness, broken gear teeth, bearing problems, 

lubrication fluctuation, dry contact with spinning surfaces, 

and excessive wear. Some researchers already tested their 

technologies in the field (for example [18]). A recent study 

proposes predictive monitoring for subsea power 

producers (permanent magnet synchronous generators) to 

minimize the chance of catastrophic failure [19]. This study 

focuses on tidal generator SHM. Many of the fractures that 

can contribute to tidal blade structure deterioration have 

been experienced and reported from tidal energy devices 

deployed in real sea conditions, such as connection 

failures, water ingress reducing fatigue life, blade edge 

erosion, biofouling, and higher blade loads than expected. 

Tidal turbine performance, dependability, availability, 

maintainability, and/or survivability have decreased. 

Existing real-time SHM methods also ignore key factors. 

Thus, there is an urgent need to design and implement 

quick, reliable, and robust real-time SHM systems on both 

new blades going into the sea and equipment on existing 

turbines to improve reliability and performance over the 

whole tidal turbine life in complicated ambient tidal 

circumstances. To receive real-time information, you also 

need a solid ICT infrastructure, and ensuring the 

trustfulness ot system responses such as inclosure of 

sensor systems to be employed in real-time for monitoring 

the material state of composite materials, as well as sensor 

data dependability, creating a massive cloud-based 

composite materials database that includes all material 

characteristics SHM and prognostics data. Also, it is 

necessary to build data-driven adaptive AI models to 

detect damages, as well as continuous learning methods to 

forecast unknown breakdown events. To speed up the 

process, integrate data-driven AI models with transfer 

learning and multi-task learning techniques can also be 

useful. Additionally, ensurance the trustworthiness is an 

essential element, for that reason a novel method, which 

could ensure the reliability and trustworthiness of the 

system’s decision, such as informing the user about the 

rationale of the black-box decision provided by the system 

is mandatory. The primary concern is transparency to the 

results, where state-of-the-art XAI techniques, for 

example, transparent model, model-specific explanations, 

and existing composite material failure theories to develop 

explanation criteria of several structure conditions of the 

tidal blade. The explanation of the decision are defined 



SYED et al.: EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR REAL-TIME DETECTION OF TIDAL BLADE DAMAGE 617-3 

using the interpretability approaches such as visual, text, 

or numerical modeling feedback. 

II. PROPOSED TECHNOLOGY 

This framework collects real-time data to identify tidal 

blade health patterns using ML. The structure features and 

crucial factors will be used to comprehend these patterns 

and annotate the data with specific tidal blade health 

problems, which will be utilized as the training dataset to 

construct the data-driven (using the right approach for 

damage detection) method. Using a comparative study 

over a variety of ML and outliers to efficiently identify 

structural damage is the purpose of statistical and ML-

based analysis. Those indications will help identify and 

analyze the damage. Composite mechanics theory and 

numerical calculation can be used to model exterior impact 

damage. Numerical simulations create monitoring data to 

characterize structural damage. ML algorithms 

intelligently find tidal blade construction damage in the 

monitoring data. Training and testing the network with 

structural data such as modal frequencies, shape, strain 

energy can be used to localize and determine the extent of 

the damage. Damage alters structural stiffness and 

dynamic characteristics, revealing the most important 

elements. Comparing structural dynamic data to reference 

values helps reveal and repair tidal blade structure 

damage. This innovative tidal blade approach will help 

industrial decision-makers evaluate blade microstructure 

health issues (including delamination, debonding, 

cracking, strain level, and others). XAI was employed to 

build the white-box decision technique (increase system 

confidence). 

2.1  Sensor Technology and Real-time Data Acquisition 

Process 

This project will require extensive analysis of the tidal 

blade performance and fatigue testing data (available at 

hosting institute-NUIG, Structure Lab) to identify the 

structural damage pattern and features that contribute to 

the deterioration of the material. For the monitoring and 

system validation purpose, new data will be acquired 

using the sensor technology. Therefore, the data quality 

checks during data acquisition and processing will be 

essential. Data completeness, reliability parameters, types, 

data formats must follow the specification. Also, the 

quality check during and after collection, data should be 

analyzed to verify consistency, reasonable distribution, 

code compliance, and correct interpretation according to 

planning measures. Monitoring of the tidal blade health 

condition is an essential component of this study. 

Typically, waterproof/ underwater sensor and bonded 

sensor patches will be required to determine the structural 

properties of the tidal blades. Some of the available options 

could be a strain sensor patch designed to conform to the 

structure's shape. Further, some vibration and acoustic 

sensors could be helpful to determine the factors and 

impact of damage or fractures which lead to cracking and 

pitch system failure. Whereas to determine the 

recommended number of sensors for each tidal blade and 

their configuration will be optimized. Sensors that monitor 

parameters required for condition assessment and 

monitoring, such as determining physical changes 

incurred during operations, are the main components of 

the SHM system. Cracks, erosion, fiber structural 

deterioration, and other issues are examples. The decision 

of which intervention to use is based on the analysis of the 

sensor data that is being monitored. During the 

functioning of tidal energy turbines, sensors can be 

positioned inside or outside the tidal blades, or in the form 

of collected photographs. As a result, it must be exposed 

to regular health checks. According to the data obtained 

from the sensors, the sensors take action. For example, for 

real-time monitoring of tidal blade curing based on sensor 

input (optical, acoustic, or image). 

2.2 LoRaWAN-based Gateways, Network Communication 

Protocols, and Microservices 

The LoRaWAN protocol is a low-power wide-area 

networking standard. Designed to connect battery-

operated devices to the internet via wireless connections in 

regional, national, and worldwide networks. LoRaWAN 

defines the network's communication protocol and system 

architecture using the ISM bands, while the LoRa physical 

layer establishes long-range communication links between 

remote sensors and gateways linked to the network. It is 

well suited for delivering tidal energy because it is low-

power and has a long-range of up to 10 to 15 miles. Marine 

settings are particularly hostile, making it difficult to 

maintain equipment installed overboard or to measure 

environmental parameters. Because of their robustness to 

interference, which naturally occurs in a marine 

environment, LoRa modulation and the LoRaWAN 

protocol proved to be suitable solutions among all the 

enabling technologies. However, LoRa-based complete 

network infrastructures for deployment offshore, as well 

as LoRa transmissions across seawater in general, are still 

active research areas today, resulting in a literature gap. As 

a result, Sensor Nodes transmit encrypted LoRa packets 

using a frequency hopping strategy as specified by the 

LoRaWAN standard. Ashore, two LoRaWAN Gateways 

are installed, which are in charge of demodulating the 

signals and transmitting the received data to a distant 

server via the Message Queue Telemetry Transport 

protocol. The Server is responsible for dealing with 

incoming packets: once they have been appropriately 

received and modified to extract any usable data, the 

Server makes them available to users by storing them in a 

database and providing a graphical interface. The 

microservices will follow the Microservice Oriented 
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Architecture and be deployed over the AWS container 

(under the Amazon Elastic Compute Cloud, as shown in 

Figure 1). For each microservice, they will be a dedicated 

container in the cloud. As shown in Figure 2, the data 

repository (AWS DynamoDB) will communicate with each 

microservices. Also, separate data stores will be formed 

from the database to follow the microservices design 

pattern. A single system will be built by the combination 

of several individual microservices. The microservice-

based architecture will be essential to build scalable, large, 

and complex applications. Along with scalability, it also 

ensures easy to build, update, deploy and simplify real-

time processing. One of the best open-source options to 

build a microservice is the Python programming language. 

Because the microservices will be employed with the 

trained AI models, therefore Python is more desirable 

(provides a wide range of libraries, such as Numpy, 

Pandas, TensorFlow, Scikit Learn, Seaborn, and others). 

Besides Python, other options are available, such as Java, 

PHP, and others. A microservice API gateway interfaces 

between the microservices and other user applications 

(web-based and mobile-based applications). It accepts all 

application programming interface (API) calls, aggregates 

the various services required to fulfill them, and returns 

the appropriate results.  

2.3 Security and Privacy Preservation 

Data confidentiality, data integrity, data availability, 

data encryption, infrastructure security, configuration 

management, identity and access control, monitoring and 

logging, and multiple account access are some critical 

features that the system must provide to secure cloud 

infrastructure and allow customers to safeguard their 

workloads. In the proposed infrastructure, a variety of 

security and privacy preservation tools has been suggested 

using the amazon cloud.  

 
Figure 1: Security and Privacy Preservation for SHM System of Tidal 

Blades 

2.4 Cloud Computing Platform 

The anticipated ICT infrastructure makes use of hybrid 

cloud computing services, which are a combination of 

private fog and public cloud computing. On the one hand, 

it facilitates data access via the Internet to anywhere in the 

world and provides an elastic environment when dealing 

with a rapidly increasing flow of data and calculation 

resource demand, such as damage occurrence over the 

tidal blade surface or the supervisor's request for current 

condition details. On the other side, due of the reduced 

need for storage, large computational resources could be 

saved. This is because raw data preprocessing, such as 

data cleansing and duplication, as well as the training of 

complicated digital models, is done first in a private 

environment. Although the cloud platform is adaptable 

and scalable, there are some limitations to consider when 

implementing the system. To commence, compute 

resources must be assigned a priority to avoid potential 

user authentication conflicts. The detail of the 

infrastructure in mentioned in Figure 2. For the 

implementation purpose, the LoRaWAN based supported 

technologies (sensors, gateway, protocol, and others) will 

be integrated with Amazon Web Services Infrastructure 

and services (as shown in Figure 2). Such as Amazon 

Elastic Computer Cloud (IaaS), AWS IoT Core, AWS 

Dynamo DB, Amazon Machine Learning and Amazon 

Kinesis. Installed sensors over the surface of tidal blades 

record and send data (acoustic/ optical strength/ physical 

structure images or other) via LoRa radio frequency 

modulation to Gateways. The LoRaWAN based gateway 

uses GSM to transmit the data the to AWS network server. 

Later, using the MQTT/ AWS integration,  

  

 
Figure 2: Proposed AWS based Cloud Infrastructure for SHM of Tidal 

Blades 

 
Figure 3: Data Transmission Protocols and Connectivity 

 

 
Figure 4: Cloud based Microservices for SHM of Tidal Blades 
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Figure 5: XAI based SHM approach 

The network server communicates with AWS IoT core 

to transfer data, which is put into the AWS DynamoDB 

database using the lambda functions of AWS. In addition, 

the AWS rules engine will be responsible for reporting if 

collected data is against the defined data rules. Also, ocean 

and weather environment data will be connected with the 

database to collect the ocean and weather conditions of 

that region. Also, survey-based data collection will be 

done to collect non-sensor-based data. Once sufficient data 

has been collected, data analysis and machine learning 

tasks will be performed to identify the correlations among 

the critical factors of damage detection, and know 

deterioration and possible future damage patterns. For 

that purpose, Amazon Kinesis and Machine Learning 

packages will be used. Also, the microservices will be 

developed to translate those findings and integrate them 

for users using web-based and mobile applications, as 

shown in Figure 2. Figure 3 displays the overall system 

architectural design, which demonstrates how the SHM 

system would execute monitoring. Amazon's Elastic Block 

Store, Simple Storage Service, Relational Database Service, 

and Redshift all include built-in encryption. Server-Side 

Encryption with S3-Managed Keys, SSE with AWS KMS-

Managed Keys or with Customer-Provided Encryption 

Keys are all options for AWS Key Management Service. 

Built-in VPC network firewalls with private or dedicated 

on- or off-premises connectivity choices, layer 3, 4, or 7 

distributed denial of server  mitigation technologies, and 

automated traffic encryption between all AWS facilities — 

global and regional — are available for infrastructure 

security. Configuration management tools were used to 

create or shut down AWS resources, manage changes, 

obtain an inventory of cloud assets, replicate tested secure 

configurations using infrastructure as code templates, and 

create standard, preconfigured, hardened virtual 

machines using Amazon Machine Images. Allow Identity 

and access control to define, enforce, and manage user 

access policies and access to cloud resources, service APIs, 

and the Amazon Console. User accounts and roles are 

defined using AWS Identity management. Multi-Factor 

Authentication and Single Sign-On provide secure login 

options. Cloud Trails keep track of the AWS cloud 

environment, including any API calls or console 

operations, to keep and logging. Amazon CloudWatch 

collects standardized log data from all Amazon services, 

and Amazon GuardDuty analyzes logs in real-time to 

detect fraudulent or illegal activity. Adding the Several 

Accounts AWS Control Tower to a customer's account 

makes it easier to set up and manage multiple accounts 

and teams. As depicted in the below picture, the Security 

Perspective approaches security themes as Scrum epics 

with several sprints addressing a variety of user stories, 

including both use and misuse situations. This method 

enables rapid iteration and maturation of security features 

on AWS while keeping the flexibility to respond to 

changing business needs. 

Figure 5, the hypothetical SHM system will consist of 

four layers. Data pre-treatment quality control, and 

transformation will be conducted in the data layers. Tidal 

Health Structure database (from sensors) is important for 

system validation, while the Performance Testing database 

mostly helps with model building. The next layer is the 

machine learning layer, which receives the data as input 

and generates a classification output (black box) for 

damage detection. Afterwards, the explainable layers use 

the XAI algorithms (LIME, SHAP, and others) and explain 

the findings through graphical reports. Over the 

explainable layer lies the assessment layer, which gives 

psychological or meaningful explanations.  

2.5 Details of explainable AI for tidal blade detection 

An explanation text variable with a damage description 

generates a XAI explanation in the procedure below. Use 

case-specific text may be added. The explanation, original 

picture, predicted class, heatmap, and overlay image are 

presented together to provide the XAI explanation for 

damage identification in tidal blade images. 

ALGORITHM FOR DEVELOPING EXPLANATIONS 

[STEP 1] Load the pre-trained model for damage detection in 

tidal blades: model = 

load_model('damage_detection_model.h5'). 

[STEP 2] Load an example tidal blade image: img = 

load_image('tidal_blade_image.jpg'). 

[STEP 3] Preprocess the image by resizing and applying 

necessary transformations: preprocessed_img = 

preprocess_image(img). 
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[STEP 4] Generate predictions using the pre-trained model: 

predictions = model.predict(preprocessed_img). 

[STEP 5] Decode the predictions to obtain the top predicted 

classes and their corresponding probabilities: 

decoded_predictions = 

decode_predictions(predictions). 

[STEP 6] Get the index of the predicted class with the highest 

probability: predicted_class_index = 

argmax(predictions). 

[STEP 7] Retrieve the output tensor of the last convolutional layer 

in the model: last_conv_layer_output = 

model.get_layer_output('last_conv_layer'). 

[STEP 8] Create a gradient model to compute the gradients of the 

predicted class with respect to the output feature map 

of the last convolutional layer: grad_model = 

create_gradient_model(model, 

last_conv_layer_output). 

[STEP 9] Compute the gradients using a gradient tape and the 

predicted class index: gradients = 

compute_gradients(grad_model, preprocessed_img, 

predicted_class_index). 

[STEP 10] Pool the gradients over all the channels to obtain the 

importance scores: pooled_gradients = 

pool_gradients(gradients). 

[STEP 11] Retrieve the output value of the last convolutional layer 

for the input image: last_conv_layer_output_value = 

get_last_conv_layer_output(preprocessed_img). 

[STEP 12] Multiply each channel in the feature map array by the 

corresponding gradient importance score to obtain the 

heatmap: heatmap = 

compute_heatmap(last_conv_layer_output_value, 

pooled_gradients). 

[STEP 13] Normalize the heatmap values between 0 and 1: 

normalized_heatmap = normalize_heatmap(heatmap). 

[STEP 14] Resize the heatmap to the original image size: 

resized_heatmap = 

resize_heatmap(normalized_heatmap, img_size). 

[STEP 15] Apply a color map to the heatmap for better 

visualization: colored_heatmap = 

apply_color_map(resized_heatmap). 

[STEP 16] Superimpose the heatmap on the original image to 

highlight the regions of interest: superimposed_image = 

superimpose_heatmap(img, colored_heatmap). 

[STEP 17] Generate an XAI explanation text based on the 

highlighted regions: explanation_text = 

generate_explanation(colored_heatmap). 

[STEP 18] Display the original image, predicted class, heatmap, 

superimposed image, and the generated explanation 

text: display_results(img, decoded_predictions, 

colored_heatmap, superimposed_image, 

explanation_text). 

 

1. Input Explanations: In tidal blade damage detection, 

input explanations try to show how certain areas or 

characteristics in the photos affect the model's decision-

making process. The XAI approach analyzes picture data 

and creates visualizations or relevance ratings that 

emphasize the blade sections most significant for 

identifying defects or fractures. These explanations may 

assist users comprehend the model's decision-making 

areas. 

2. Output explanations: Output explanations describe why 

the model decided to include or exclude fractures or 

defects in the tidal blade picture. The XAI technique 

evaluates the model's internal workings and discovers key 

traits or patterns that affected the conclusion. It visualizes 

or describes the important criteria or evidence utilized by 

the model to identify damages. These explanations may 

assist users comprehend the model's predictions. 

3. Techniques and graphics: The XAI approach used to 

identify deterioration in tidal blades may use numerous 

techniques and graphics to explain. It might employ 

saliency maps or heatmaps to emphasize the visual parts 

that greatly influence the choice. These visualizations may 

help users understand which elements of the tidal blade 

picture are causing the model to identify faults or 

fractures. 

4. Interpretability and user knowledge: The provided 

explanations seek to improve interpretability and user 

knowledge of the model's damage detection judgments in 

tidal blades. The explanations assist users understand the 

model's elements by clearly visualizing or describing key 

areas or characteristics. They allow users to assess and 

understand the model's detection process, increasing trust 

and confidence in the model's accuracy and efficacy. 

5. Integration with model outputs: The model's predictions 

are used to produce explanations. After the model 

discovers fractures or defects in a tidal blade picture, the 

XAI approach analyzes the decision process. The model's 

explanations provide context and rationale for the 

discovered faults or fissures. 

6. Application specific considerations: Tidal blade damage 

detection explanations should be adjusted to the blades' 

features and forms of damage. For instance, the 

explanations might concentrate on blade sections prone to 

deterioration, fracture patterns, or structural aspects that 

affect detection. This adjustment makes the explanations 

relevant and useful for tidal blade examination. 

III. CONCLUSION 

Despite the optimal design of tidal turbines, it is vital to 

check the health of turbine components to ensure reliable 

operation and catastrophic failure. Tidal blades are key 

components of tidal turbines that are subject to 

performance degradation due to the harsh operating 

environment, which could result in serious performance 

failure or breakdown if left unattended. Therefore, to 

address this issue, in this paper we have proposed 

framework consisting of state-of-art information 

communication technology, including sensor/ devices, 

cloud technology, equipped with responsible or 

trustworthy artificial intelligence (called as explainable 

AI). Initially, a real-time technological infrastructure is 

proposed with ensuring the security and privacy under 

consideration. Later, we have suggested some amazon 

web service based technologies can be used to develop this 

framework. Our core framework at software level is 

divided into three different layers, data layer, machine 

learning layer and explainable artificial intelligence (XAI) 
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layer. We have also proposed a algorithm for XAI layer, 

which is novel step for this technology, which ensures the 

transparency in the black box decisions made my machine 

learning models (ML). In future study, model hyper-

parameters will be optimized using critical components 

and tidal blade deterioration patterns and more critical 

explanations will be addressed to detect the structure 

health. The most significant part of XAI is comprehending 

psychological or meaningful explanations through 

domain-specific criteria development, but the tidal blade 

has no such criteria, thus  in future, it is more crucial for 

researcher to contribute in this direction. The proposed 

solution in this paper open the way to further improve this 

technology and contribute in the direction to develop 

predictive approach for tidal blade monitoring and 

damage detection, which is also the future concern of this 

study. 
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