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Impact of Resource Uncertainties on the
Design of Wave Energy Converters

Markel Penalba’, Ander Zarketa-Astigarraga, Paul Branson, Bryson Robertson

Abstract—Precise resource characterisation is crucial for
the assessment of the performance of wave energy con-
verters (WECs). Wave data from in-situ observations is
considered to be the most accurate, but is expensive
and complex, while re-analysis datasets, although very
accessible, may not be fully reliable. However, apart from
energy potential characterisation and site selection, little
attention is usually paid to the precision of the metocean
datasets during the WEC design process. The present
paper evaluates the impact of resource uncertainties on
the WEC design process, including design aspects, such
as power production capabilities, structural integrity and
operation and maintenance. Overall, it is demonstrated
that the raw ERAS5 re-analysis datasets are unreliable, with
design parameters misestimated by up to 50%. However,
the application of statistical bias correction techniques
enables reducing the bias significantly, providing estimates
of the design parameters that are very similar to those
obtained based on observation datasets.

Index Terms—Resource assessment, Wave data uncertain-
ties, Statistical bias correction, Wave Energy Converters
design.

I. INTRODUCTION

CHIEVING a worldwide transition from fossil

fuels to clean energies and realizing a carbon-
neutral energy system requires a massive expansion
of renewable energy sources. This transition aligns
with the objectives outlined in the Paris Agreement
[1] and the latest report from the International Panel
for Climate Change (IPCC) [2] to mitigate the most
severe impacts of climate change [3]. While mature
and reliable renewable technologies like wind and
solar energy exist, the scale and pace of this transition
will necessitate the involvement of other renewable
technologies. According to the International Renewable
Energy Agency (IRENA), the total global installed
capacity of renewable energy needs to increase by a
factor of five, equivalent to an additional 14 TW by
2050 [4]. Offshore renewable energy (ORE) systems
are considered a viable alternative to facilitate this
transition. The International Energy Agency predicts
that approximately 45% of CO, emission savings by
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2050 will come from technologies still in the develop-
ment phase [5]. Offshore wind power, for instance, is
projected to multiply its current worldwide installed
capacity by a factor of 30 over the next three decades
[4]. Similarly, wave and tidal energy, although still
in the early stages of development, are anticipated
to make significant contributions to the future energy
mix, potentially covering around 10% of the global
electricity demand [6], [7].

However, wave energy converters (WECs), tidal
energy converters, and even floating offshore wind
turbines (FOWTs) require substantial development to
become competitive in the energy market. Key aspects
for the advancement of these technologies include:

i. Optimizing the design of floating structures by
reducing material usage while ensuring reliability
and structural integrity (SI).

ii. Increasing energy generation capacity through the
consideration of nonlinear hydrodynamics and the
design of control algorithms.

iii. Enhancing the durability of critical components
such as mooring lines and power take-off (PTO)
systems by utilizing new materials and designing
them to operate within better-adjusted regions.

iv. Improving accessibility and availability through
the optimization of operations and maintenance
(O&M) strategies.

Accurate metocean data plays a crucial role in the
effective and reliable design of successful ORE tech-
nologies, encompassing all the aforementioned aspects.
The use of incomplete or inaccurate metocean data
introduces higher uncertainty into the design process,
which is already inherently uncertain [8]. This uncer-
tainty leads to excessive conservatism in the design
of ORE technologies, resulting in large and expensive
systems that struggle to compete in the current energy
market [9]. Since resource assessment is the initial step
in the energy conversion chain of any ORE system, the
uncertainty in metocean data impacts all subsequent
stages, from predicting system responses to estimat-
ing energy generation [10], [11]. Offshore renewable
energy technologies are typically designed for two
distinct operational modes: power production mode
(PP) and survivability mode (Surv). Understanding and
reducing metocean data uncertainties across the entire
operational domain, encompassing both modes, are of
utmost importance.

Moreover, considering spatio-temporal variations,
including inter- and intra-annual variability [12], as
well as the potential non-stationarity of the resource
[13], [14], necessitates the use of long datasets for a
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comprehensive understanding of the resource. Vari-
ous international organizations recommend consider-
ing relatively lengthy data periods. For instance, the
International Organization for Standardization (ISO)
suggests a minimum of 10 years of data (25% of
the return period of interest) for ORE systems with
a lifespan of 20-30 years [15], while the Institute of
Marine Engineering, Science & Technology (IMAREST)
recommends a longer period of 30 years to accurately
characterize extreme events [16].

The most common sources of metocean data in
the ORE sector are observation buoys and re-analysis
datasets. However, wave measurement buoys or other
observation systems often struggle to cover such
lengthy data periods, and their deployment and main-
tenance in the open ocean can be complex and costly.
Consequently, re-analysis datasets and data from cli-
mate models are frequently employed. These datasets
provide metocean data over extensive time periods
(some dating back to 1900 [17], [18]) and are avail-
able at any location worldwide at little to no cost.
Nonetheless, re-analysis datasets suffer from limited
accuracy under certain conditions, particularly in ex-
treme events. Calibrating re-analysis datasets helps re-
ducing the differences (bias) between raw datasets and
observations, enabling the generation of precise long-
term metocean data that cannot be solely obtained from
observations. Hence, the identification of the accurate
calibration or bias correction (BC) technique is crucial.
Such an analysis has recently been carried out along
the Spanish coast in [19], where the effectiveness of
different BC techniques is evaluated only based on
resource data.

The present paper goes one step further and assesses
the impact of BC techniques on different WEC design
parameters, including most relevant aspects of the
design process:

i. Power production capabilities by estimating the An-

nual Mean Power Production (AMPP),

ii. Structural integrity by evaluating the extreme event

design point, and
iii. Operational and Maintenance (O&M) by computing
the mean waiting time.

It should be noted that these aspects are possibly
not independent from each other. For example, SI
directly affects O&M and, in turn, O&M affects the
power production capabilities. However, for the sake of
simplicity, the three aspects are studied independently
in the present study.

The reminder of the paper is organised as follows:
Section II describes the different BC techniques consid-
ered in this study; Section III describes the case study,
including the geographical location, the wave data and
the WEC device employed in the analysis; Section IV
shows the main results of the analysis and Section V
draws the most relevant conclusions and future work.

II. BIAS CORRECTION TECHNIQUES

Bias correction techniques are statistical tools that
adjust the values of raw data to match the statistical
properties of observed data. These techniques have

gained popularity in climate and meteorological stud-
ies over the past two decades [20], [21], and their
application does not require a deep understanding of
the underlying physics of models or data assimila-
tion methods [22]. These techniques can be applied
to various variables, but the quality of the corrected
or calibrated datasets relies heavily on the quality of
the reference dataset, typically represented by obser-
vations, which serves as the “ground truth.” For more
detailed information on BC in climate and meteorolog-
ical datasets, refer to [21].

Four BC techniques are applied: Delta-change, Full
distribution mapping (FDM), Quantile mapping (QM),
and Gumbel quantile mapping (GQOM). All BC tech-
niques consist in adjusting the distribution of the
assimilated dataset (y*°) by adding a correction fac-
tor computed via measured (y°**) and assimilated
datasets. The difference between the BC techniques
lie on the method to compute the correction factor.
It should be noted that the present study uses only
the significant wave height (H;) and peak period (7},)
datasets, since WECs’ performance is assessed by com-
bining these two variables.

A. Delta

The Delta-change technique involves adjusting y®*
by adding a constant correction factor calculated based
on the difference between the average values of the
assimilated (y%*) and measured datasets (y°**). The
corrected dataset is obtained by adding the correction
factor to the assimilated dataset:

yrC =y (G -9, )

where i = 1,..., N, N being the number of timesteps
considered from the datasest.

B. Full distribution mapping

The FDM technique uses the entire cumulative den-
sity function (CDF) of the assimilated and observed
datasets to identify the statistical relationship between
them. This relationship is then transformed into time-
domain correction factors using an n-order polyno-
mial function. The corrected dataset is obtained by
adding the correction factors to the assimilated dataset
(XFPM) which is computed as the difference between
the inverse CDF of the assimilated (CDF,.') and ob-
served datasets (CDF,,!):

XFPM — ¢DFE; ! — CDF,} ()

obs?

Hence, the dataset corrected via the FDM technique
is given as,

yP¢ =yt 4 f(XFPM ), )

where f denotes the n-order polynomial function.
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C. Quantile mapping

The QM method is similar to FDM, but identifies
the correction factors at each quantile (¢;) of the CDE.
The assimilated and observed datasets are divided into
quantiles, and the correction factor for each quantile is
computed. The corrected dataset is obtained by adding
the quantile-specific correction factor XM (¢;) to the
assimilated dataset. Hence, the correction factor for
each quantiles is computed as,

XM (qj) = CDF,N(g5) = CDFy(a), )

which is incorporated in the BC method as in Equation
(3), except that the correction factor is applied at each
quantile:

yP%(g;) = y**(q;) + F(XM(g;),n). (5)

In this study, 50 linearly-spaced quantiles are defined
between the 1t and the 99" quantiles, both included
(gj=1,...,99).

D. Gumbel quantile mapping

The GQM technique is a variation of QM, where the
quantiles are placed following a Gumbel distribution
function (GDF), as illustrated in 6. That way, the upper
tail of the distribution is better represented, placing
over 50% of the quantiles are commonly placed above
the 99" quantile.

Flamp) =e ", ©)
where ;1 and § are, respectively, the location and scale
parameters.

With the quantiles identified following the Gumble
distribution, the correction factor is also computed
based on the inverse CDFs at each quantile, as in 4,
and applied to the assimilated data using a polynomial
function as in 5.

III. METHODOLOGY AND CASE STUDY

The methodology used in the present study is di-
vided into two main aspects. On the one hand, BC
techniques are applied to re-analysis datasets as in [19],
including the pre-processing of the data. On the other
hand, the corrected data is employed for the evaluation
of the impact on the WEC design aspects described in
Section 1.

A. Wave data

The present study analyses a single geographical
location among the four locations studied in [19]: Gulf
of Biscay, as illustrated in Fig. 1 (a). This location
represents a sheltered area in the North-East Atlantic
Ocean that is primarily influenced by swell waves
(Hs = 1.9 m and 7, = 9.6 s). Although sheltered,
this area is considered to be highly interesting for
the implementation of diverse ORE technologies, as
demonstrated by the Mutriku Wave Power Plant con-
tinuously supplying electricity to the grid since 2011
[23] and the pre-commercial FOWT farm promoted by
Saitec Offshore Technologies [24].
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a) Geographical location of the case study, including the location
of the measurement buoys (large green diamonds) and the
ERAD5 re-analysis gridpoints (small red circles) [19]
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Fig. 1. Geographical location, and Taylor diagrams and bias of the
different BC techniques: (b) Hs and (c) T [19]

In this study, re-analysis data is obtained from the
ERA5 product by the European Centre for Medium-
Range Weather Forecasts, while observations data is
provided by the Spanish Port Authorities coordination
agency, Puertos del Estado. Both datasets are publicly
available. Although the temporal resolution is identi-
cal, the observation dataset provided by Puertos del
Estado includes several missing points, meaning that a
pre-processing is necessary for comparability. The pre-
processing addresses irregularities and temporal gaps
in the observation data, either by interpolating single-
sample gaps or omitting data for longer gaps. These
actions ensure that the datasets have the same length



529 - 4

a) Illustration of the Sparbuoy WEC.

Wave peak period (s)
6 6.5 7 7.5 8 85 9 9.5 10 | 105 | 11 | 115 | 12 | 125 | 13 14
1 7 8 3 9 9 10 10 10 9 3 9 3 3 8 7 | 7
15 10 | 105 | 14 | 145 | 17 | 175 | 19 19 | 175 | 17 | 165 | 16 | 145 | 14 | 125 | 22
Significant |__2 11 15 25 28 30 | 355 | 36 34 33 30 25 23 20 17 16
wave height| 2.5 16 25 38 a8 55 59 61 54 51 a8 44 37 34 29 22
(m) 3 24 34 54 68 81 85 85 80 75 68 62 57 51 45 34
35 32 51 75 89 106 | 115 | 118 10 102 | 95 85 79 68 62 50
4 a8 51 97 T2 | 131 | 138 | 139 | 138 | 136 | 124 | 119 | 111 98 91 78 66

b) Power matrix of the Sparbuoy WEC.

Fig. 2. (a) Illustration of the Sparbuoy OWC device, including the cut section indicating the fixed reference frame and the 1:16 scale of the

device [25]), and (b) the power matrix of the Sparbuoy [26].

and discretisation for the computation of correction
factors in the bias correction techniques.

The improvement of data quality due to different
BC techniques are evaluated in [19] and illustrated in
Figures 1 (b) and (c) by means of Taylor diagrams.
Three aspects can be highlighted here:

 The quality of the raw ERA5 dataset is rather poor,
particularly for T,

o The Delta and FDM BC techniques barely provide
any improvement,

o The QM and GQM techniques, especially the QM,
significantly improve the quality, considerably re-
ducing the bias.

The results of the present study assesses the impact

of such an uncertainty of the wave data on the different
crucial aspects of the WEC design process.

B. Sparbuoy WEC

The Sparbuoy is a floating OWC (Oscillating Wa-
ter Column) device that consists of a semi-cylindrical
hollow floater moored to the seabed. As in any other
floating OWC device, ocean waves induce the motion
of the floater and the water column, enabling the
compression and expansion of the air in the chamber.
This air flows out and in the chamber from the top
of the floater, driving an air-turbine with the flow and
generating energy via the electric generator coupled
to the turbine. Fig. 2 illustrates the cut section of the
device indicating the fixed reference frame and the 1:16
prototype of the device [25]. Oscillating water column
WECs are one of the most robust and reliable tech-
nologies, demonstrated both in reference onshore wave
plants, such as the Biscay Marine Energy Platform
(BiMEP) test-site [23] and offshore floating prototypes,
like the MARMOK-A-5 [27] developed by IDOM.

C. WEC design process

The design process of ORE technologies, including
WECs and FOWTs, consider three main aspects defined
in Section I: (i) power production capabilities, (ii) SI
and (iii.) O&M. For each of these aspects, one metric is
considered, so that the impact of resource uncertainties
can be assessed.

1) Power production capabilities: In the case of power
production capabilities, the AMPP is the estimation
of the WEC’s energy production, which is commonly
evaluated by means of a power matrix [28], where the
average power production from each wave conditions
or sea states (combination of H, and T},) is estimated in
a matrix. Fig. 2 (b) illustrates the power matrix for the
Sparbuoy WEC provided in [26]. Combining the power
matrix and the wave resource information, the annual
mean power production (AMPP) can be computed as
follows,

AMPP = 3" S Py, (Hs(0), Ty () PDF (H, (i), Ty ()

i=1 j=1

@)

where the Ny, and N7, are the number of H and T),
values considered in the power matrix.

2) Structural integrity: The assessment of the SI is
commonly divided into fatigue and extreme loads,
each of which have different consequences. In any case,
the WEC needs to be able to reliably bear with the
fatigue from cyclic loads and extreme loads occurred
in extreme wave conditions. The former requires the
computation of the damage by means of a fatigue
model over the whole operational regions as in [29],
while the latter is estimated by a single point in terms
of H,. Hence, the design point to be considered for con-
sidering extreme events is the limiting H, value that is
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assumed to be the most extreme wave condition that a
ORE technology will encounter [30]. This design point
is commonly evaluated by means of environmental
contours [9], [10], although other approaches have also
been suggested [8]. Two of the most relevant environ-
mental contours have been selected in this study: the
inverse first-order reliability method (IFORM) and the
inverse second-order reliability method (ISORM) [10].
The SI analysis in the present study is restricted to the
evaluation of the extreme design point by computing
the environmental contours via the Virocon toolbox
[31] and identifying the limiting wave condition of the
contour. Due to the uncertainty of the environmen-
tal contours [10], two different approaches have been
used, as illustrated in Fig. 3.

IFORM EC

10 Wave data

9 === ECronw (T;=20years)

Y.

# Design point (T,=20 years)

Significant wave height (Hs [m])

5 10 15 20 25
Energy period (T= [5])

a) IFORM-based environmental contour.
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(=4l

Energy period (T- [s])
b) ISORM-based environmental contour.

Fig. 3. Environmental contour and extreme design point identifica-
tion for the (a) IFORM and (b) ISORM techniques.

The environmental contours illustrated in Fig. 3
can be computed for different return periods, which
represents the horizon for which the environmental
contour is defined. As the return period increases,
more frequent and harsher extreme events become
more statistically more likely, which results in larger
environmental contours and greater extreme design
points. Therefore, the present study considers three
different commonly used return periods: 20-year, 50-
year and 100-year return periods.

3) Operation and maintenance: Finally, wave condi-
tions can have a significant impact on O&M aspects
by limiting the accessibility to the device/farms and,
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thus, the availability of the system. The availability
reduction has a direct impact on the final energy
generation and, as a consequence, the Operational Ex-
penditure (OpEx) and levelised cost of Energy (LCOE).
The accessibility and availability assessment are car-
ried out based on the wave conditions and the O&M
requirements of the device, where these requirements
vary depending on the type of vessel used in the
operation and the weather window (WW) required
for the repair/replacement task [32]. The combination
of the WW and the operational limits of the O&M
vessels provides the mean waiting time (mWT), which
represents the mean time to wait for executing the
O&M task. Hence, each waiting time is defined as the
time between two consecutive WWs, as illustrated in
Fig. 4, which can be averaged over the whole lifetime
to compute the mWT [33].

Hs
WWi1 WTI1 WWwa2 WT2 WW3
. * . *?
Hs,. ®
lim|
(]
) [
[ ] L]
L) . . . s
°
[} . .
e . —————2 | . Time
12345678 91011121314151617 1819 20
1 WW: Weather Window 1 WT: Waiting Time @ Hs(t)

Fig. 4. Weather Window [33].

For the sake of simplicity, the O&M requirements
of the device are fixed with an operational limit of
H,,, = 2m, which represents O&M vessel characteris-
tics between a Crew Transfer Vessel (H,,,,, = 2.5m) and
a Field Support Vessel (H,,,,, = 1.8m). Additionally,
the WW is also fixed for a duration of 8 hours, which
represents the time required to perform a minor repair
[32]. That way, each BC technique analysed in this
study will provide a single mWT estimate for each
environmental contour approach.

IV. RESULTS AND DISCUSSION

Assuming that the Delta and FDM BC techniques
barely improve the quality of the wave data, the design
parameters are only computed for the datasets ob-
tained via QM and GQM techniques, comparing them
against the design parameters calculated based on the
observation and raw ERA5 datasets. This comparison
is carried out for the three WEC design aspects, show-
ing the inappropriateness of the raw ERA5 datasets, on
the one hand, and the suitability of each BC technique,
on the other.

A. Power production

The estimation of the AMPP is crucial, since it is
commonly used for the assessment of the different
WEC technologies and/or geographical locations. Fig.
5 illustrates the AMPP estimates based on the differ-
ent wave datasets, showing that the AMPP estimated
based on raw ERA5 dataset (13kW) underestimates
the power production capabilities in almost 50% of
the AMPP estimated based on observations (21kW).
Such a difference becomes almost negligible when
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computing the AMPP based on the QM- and GQM-
corrected datasets, showing an improvement of over
70% with respect to the estimate based on the raw
ERAS5 dataset. In this sense, the QM technique seems
to provide slightly better results, although the absolute
deviation in both cases is below 1%.

Sparbuoy WEC power production 1t

25
—@—Observation
Raw re-analysis
20 10 —4-EQM
g = —%EGQM
= K<)
by =
S 15 S8
s s |
3 g o
Q 9 6
& 10 %
'«% Il Obserbed data 3
s
i} I Raw ERA5 (-42.3% & N/A)
57 [TJEQM (0.7% & 74.6%) 4 )
I EGQM (-1% & 71.6%)
0 2
1 12 14 16 18 20
AMPP [kW]

Fig. 5. Power production estimation based on the wave conditions
from the different BC techniques.

Apart from the mean power production, precisely
estimating the variability of the power production is
crucial in WEC design, since the mean-to-peak ratio is
considered, for example, when designing power take-
off systems or control strategies. Fig. 5 on the right de-
picts the relationship between this mean-to-peak ratio
and the AMPP. The figure clearlly shows that the raw
ERAS dataset results in a great misestimation of both
the mean-to-peak ratio and AMPP. In contrast, both the
QM and the GQM show their capacity to accurately
estimate the realistic power production capabilities,
including a very good estimation of the mean-to-peak
ratio.

B. Structural integrity

The extreme design point for the assessment of the
SI in extreme loads is analysed in this section. Figures
6 (a) and (b) illustrate the H, corresponding to that ex-
treme design point computed via IFORM and ISORM
environmental contour approaches, respectively. In ad-
dition, Fig. 6 provide the information on the design
point for three different return periods.

First of all, it can be observed that, for the obser-
vations wave data, the results based on the ISORM
approach provides more conservative design points
(above 17m for all the return periods) than the IFORM
approach (below 16m for all return periods). However,
the sensitivity of the design points with the wave data
seems to be consistent regardless of the environmental
contour approach. Hence, on the one hand, the raw
ERAS5 dataset is shown to significantly underestimate
(over 30%) the extreme design point for all return
periods. Such an underestimation can have dramatic
consequences, since the WEC would be design to
withstand wave condition of up to 10-12m, while the
statistical analysis carried out with observations results
in the need of up to 15m. On the other hand, it can be
noted that both QM and GQM BC techniques provide
very similar design point estimations for all the return

Design point Hs [m] - IFORM EC

20
E
=15} -
=y
(]
K
g
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=
€
3 Il Obserbed data
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o [CIEQM (0.5% & 46.7%)
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. | N |
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a) [IFORM-based environmental contour.
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K
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o [CTIEQM (0.5% & 56.9%)
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b) ISORM-based environmental contour.

Fig. 6. Comparison of the extreme design points for different return
periods and wave data: (a) IFORM and (b) ISORM environmental
contour approaches.

periods, with GQM showing slightly better results.
This is to be expected, since the GQM techniques
focuses on the highest quantiles, considerably reducing
the bias of the extreme conditions.

C. Operation and maintenance

Overall, similar trends are also observed when
analysing O&M aspects for WEC design. Indeed, the
WTs computed based on the raw ERA5 wave dataset
shows to underestimate the real WTs in 50%, as illus-
trated in Fig. 7 (a). Hence, the impact of the bias of
the ERA5 re-analysis dataset is largest when analysing
O&M aspects. Fig. 7 (b) illustrates the PDFs of the
estimated WTs for each dataset, clearly showing that,
besides the mean WT, the difference in the WT esti-
mates is remarkably poor.

As in other design aspects, the use of BC techniques
can correct this underestimation, although the WTs
computed on the corrected datasets also show higher
deviations for O&M aspects: almost 10% and 15%
underestimation for the QM and the GQM, respec-
tively. However, the WT PDFs for the QM and GQM
techniques shown in Fig. 7 (b) demonstrate that the
improvement with respect to the raw ERA5 dataset is
outstanding, especially for the QM approach. This is
also to be expected, as the QM technique provides a



PENALBA et al.: IMPACT OF RESOURCE UNCERTAINTIES ON THE DESIGN OF WAVE ENERGY CONVERTERS

Mean waiting time

Waiting time [h]
3
o

I Obserbed data

I Raw ERAS (-51% & N/A)
[CTIEQM (-9.6% & 84.4%) | |
I EGOM (-13.3% & 76.9%)

g X 10°
= Obserbed data
'f Raw ERA5
4r i QM
il*‘l —-——GQM
il
=30 l'l“
i i
) i
o, i,
1 L
0 ol Tl -

0 2000 4000 6000
Waiting Time [h]

b) PDF of the waiting times.

8000 10000

©

— Obserbed data

[e=]

~

[=2}

w ~ o
T

Significant wave height [m]
N

Jan 19 Jan 25 Jan 31 Feb 06 Feb 12

2019
c) Hs series compared to the O&M vessel operational limit.

Fig. 7. O&M design aspects.

better correction for average H, values (H;,,K = 2m
is considered). This is clearly illustrated in Fig. 7 (c),
where the hourly H, signal is illustrated.

V. CONCLUSIONS

Resource assessment is well known to be crucial for
site selection and evaluating the interest of different
geographical locations. Hence, policymakers and gov-
ernments make decisions based on the resource charac-
teristics of specific geographical areas, for example, to
define the areas offered in auction. Beyond the political
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level, resource assessment is also critical in the design
of offshore renewable energy (ORE) technologies. Some
of the key aspects in the design process of Wave
Energy Converters (WECs), such as power production
capabilities, structural integrity and Operation and
Maintenance (O&M) aspects are highly sensitive to
the resource characteristics. However, precise metocean
data is not always available, because wave monitoring
technologies are expensive and delicate, while climate
models and/or re-analysis datasets are still not fully
reliable.

In this sense, statistical bias correction techniques are
commonly used in meteorological applications, but not
that frequent in the ORE industry. The present paper
analyses the sensitivity of some of the most critical de-
sign parameters (annual mean power production, ex-
treme design point and waiting time between weather
windows) to wave conditions. To that end, these design
parameters are computed based on four different wave
datasets: observations, raw ERA5 re-analysis, and re-
analysis data corrected via the quantile-mapping (QM)
and Gumble quantile-mapping (GQM) techniques.

Results show two main conclusions. On the one
hand, it is demonstrated that the raw re-analysis wave
datasets are unreliable to be used in the design of
WEC systems. In fact, the raw ERA5 dataset is shown
to be unreliable for all the three design aspects, with
underestimations of up to 50%. However, the use of
bias correction techniques can significantly improve the
quality of the wave data, reducing the misestimation to
up to 10% and providing reliable estimates for all the
different WEC design aspects. In fact, both QM and
GQM techniques show similar results, the QM being
more appropriate for power production and O&M
aspects, and the GQM more adequate for the extreme
design points.
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