PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3-7 SEPTEMBER 2023, BILBAO

505-1

On the accurate prediction of turbine power
and thrust using BEM and CFD

Yabin Liu, Stefano Gambuzza, Riccardo Broglia, Anna M. Young, Edward D. McCarthy,
and Ignazio Maria Viola

Abstract—We compute the loads on a model-scale tidal
turbine with Blade Element Momentum (BEM) theory
and Computational Fluid Dynamics (CFD) simulations,
and we compare the results with towing tank tests. CFD
simulations are wall-resolved, steady, Reynolds-averaged
Navier-Stokes simulations with a £ — w SST turbulence
model, where only a 120° wedge domain with a single
blade is resolved in a non-inertial frame of reference.
We undertake a detailed uncertainty analysis to identify
the sources of error. BEM uncertainty is computed with
a Monte-Carlo approach based on the differences in the
predictions of CFD and Xfoil for the sectional lift and drag
coefficients,while CFD uncertainty is based on the errors
due to the finite number of iterations and spatial resolution.

The maximum error of CFD (8.0%) with respect to the
experimental data is about half of that of BEM (15.5%)
for the power (Cp) and the thrust (Cr) coefficients and
both errors are within 4.1% for CFD and within 7.2%
for BEM around the optimal tip-speed ratio (A = 6.03).
The BEM error is within the uncertainty associated with
the imprecise knowledge of the sectional lift and drag
coefficients. The sectional forces from CFD and BEM
disagree at both the tip and the root, resulting in a
substantial BEM underprediction of Cp at high )\ values
(up to 15.5%), yet Cr is well predicted (within 2.3%) at
every A. The CFD uncertainty is markedly smaller than the
error, which is thus mostly due to a modelling error such as
the turbulence model, the neglected effect of the support
structure, the free surface, and the imprecise knowledge
of the input conditions. Overall these results suggest that
CFD provides both a maximum error and uncertainty
that are substantially smaller than that of BEM, but both
methods suffer from modelling errors that require further
investigation.

Index Terms—Tidal energy, tidal turbine hydrodynamics,
computational fluid dynamics, blade-resolved Reynolds-
averaged Navier-Stokes simulations, blade element mo-
mentum theory.

I. INTRODUCTION

ARVESTING energy from tidal current can con-
tribute to the transition to sustainable use of re-
newable energy. Tidal power can provide 34 TWh/year
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in the UK alone [1]. The performance of tidal tur-
bines, as the key energy conversion component in tidal
power systems, plays a crucial role in effectively ex-
ploiting tidal energy. Accurately predicting the energy-
harvesting efficiency of turbines and the associated
flow physics is essential to assess and improve the
turbine performance through optimised hydrodynamic
design [2]. To improve confidence in modelling tech-
niques and establish good practice, the UK Supergen
Offshore Renewable Energy Hub has run an Unsteady
Loading Tidal Turbine Benchmarking Study [3]. Exper-
iments were performed in a towing tank at a Reynolds
number of 1.3x 10° based on the constant towing veloc-
ity Uss = 1 m s~! and the turbine diameter D = 1.6 m.
The tested geometry, as well as the flow and operating
conditions, were made available to different groups to
make a blind prediction of the measured forces and
power [4]. This paper presents the details of the BEM
simulations and the CFD simulations performed at the
University of Edinburgh, for which a detailed analysis
of the numerical uncertainties has been undertaken.

II. BLADE ELEMENT MOMENTUM THEORY

BEM simulations are performed with transTide
[5], [6], a BEM solver developed in-house that predicts
the loads generated by a tidal turbine subject to tur-
bulent, sheared, and yawed inflow conditions in—the
presence-of-yaw. Each of these features can be toggled
individually, and the simulations reported here do not
make use of any of these features. A detailed rundown
of the practical implementation of turbulence in this
code is reported in detail in Scarlett et al. [5] and
Scarlett and Viola [6], and the code has been used and
validated for tidal-energy applications by Pisetta et al
[71-[10].

The sectional lift (C) and drag (Cp) coefficients are
computed with XFOIL [11] and are a function of the
local angle of attack « and the local Reynolds number
Re.. The chord-based Reynolds number is assumed
only a function of the radial coordinate r and not of
the tip-speed ratio A, i.e.

Usoc(r) rA\D 2
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where ¢(r) is the local chord as function of the radial

coordinate r; v is the dynamic viscosity of water; R =

D/2 is the rotor diameter, and Ap = 6.03 is the design

tip-speed ratio. We specify the critical amplification
number N, [12] as a constant value of nine over the

Re. =



505-2

whole blade. Results are averaged over five rotational
periods.

We assume that the main source of error is in the
estimate of the sectional lift and drag coefficients.
This is estimated through the difference between the
values of the coefficients computed with Xfoil (O}
and CFF™) and those computed with CFD by the
benchmark organisers (CRANS and CRANS). We compute
the 95% confidence interval in the estimate of the
coefficients by multiplying the error by a factor of
safety of three [13],

Eg, = 3max (|CFANS — CFFM)) )
Eg,, = 3max (|CF™ — ")) . 3)

The uncertainty in the BEM results is estimated with a
Monte-Carlo approach as follows. For each test case,
the simulations are run 500 times, changing the lift
coefficients for each section by a constant, random
value §; and the drag by a constant, random dp;
these are drawn from normal distributions having zero
mean and standard deviations respectively E¢, /2 and
Ec, /2. Then, for every generic quantity = via BEM,
we compute the width of the 95 % confidence interval

as
20,

VN’
where o, is the standard deviation of N = 500 inde-
pendent estimations of z.

E, =

(4)

III. COMPUTATIONAL FLUID DYNAMICS
A. Numerical methods

We solve the steady-state Reynolds-averaged Navier-
Stokes (RANS) equations with the open-source tool
OpenFOAMV2106. We employ the simpleFoam solver
with the SSTk — w turbulence model. We model a
third of the turbine rotor (Figure 1), and we solve the
governing equations for a non-inertial rotating frame
of reference. The computational domain is a 120° slice
of a cylinder, whose axis coincides with that of the
tested turbine. The domain is 17D in length along the
streamwise direction and has a radius of 2.5D. We
set uniform, constant free stream velocity with zero
turbulence at the upstream inlet boundary; constant
zero pressure at the downstream outlet boundary; slip
condition at the outer side boundary; periodic con-
dition at the two inner side boundaries; and no-slip
condition at the blade and hub surface. The domain
is discretised using ICEM-CFD with a non-conformal
structural mesh of 19M hexahedral cells (Figure 2). The
blade’s boundary layer is resolved with y* below 0.3
at the design tip-speed ratio A = 6.03 (Figure 3). The
growth ratio of the grid size inside the blade boundary
layer is about 1.1.

The rotational cyclicAMI interface tool is em-
ployed to couple the periodic domains. A Semi-Implicit
Method for Pressure Linked Equations-Consistent al-
gorithm is used for the pressure-velocity coupling,
while the Gauss linear scheme is used for gradients and
the bounded Gauss upwind scheme for the divergence.
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The pressure solver is set as a Generalised Geometric-
Algebraic Multi-Grid, and the smoother solver Gauss-
Seidel is employed for the other terms.
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Fig. 1. Complete geometry of the modelled turbine, (a) and axial
view of the 120°-wedge computational domain (b).
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Fig. 2. Mesh on the blade surface (a) and detailed view near the tip
(b). LE: leading edge; TE: trailing edge; PS: pressure side; SS: suction

side.
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Fig. 3. y* distribution on the pressure (a) and suction (b) side of
the blade surface at A = 6.03.

B. Verification - Uncertainty quantification

The uncertainty of the CFD simulation is computed
following the least square approach proposed by Viola
et al. [14] that is summarised hereby. This method was
originally developed for yacht sails. It was successively
adopted for a wide range of applications, including
the flow past the pappus of the dandelion diaspore
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[15], permeable disks [16], oscillating flapping foils
[17], vertical-axis [18] and horizontal-axis turbines [19],
arrays of energy harvesters [20], and ship hulls [21].
The verification process is set out to estimate the
absolute (Eg) or the relative uncertainty (Us) at 95%
confidence level in the estimate of the quantity &,
which here is either the power or the thrust coefficient,

where
Ep = dUs. )

The relative numerical uncertainty is estimated in-
dependently for each source of error, including that
due to the finite grid resolution (Us,), the finite time
step (Us,), the round-off (Us,), and the finite number
of iterations (Us,). In this work, Us, is not assessed
because the simulations are steady, and Us, is consid-
ered negligible because double precision is used. The
uncertainty due to the finite spatial resolution is esti-
mated by undertaking simulations with different grid
resolutions. The same procedure could be followed to
compute Uy, if the simulations were unsteady, testing
different time resolutions. Take % as the relative step
size of the resolution, i.e. the ratio between the linear
grid size of the current and the reference grid. We

define

o) = o) ©

(base)’
where ®(base) is the value of the computed solution
with the base grid size for which the uncertainty is
computed. We fit p(h) with

¢(h) = Ch* + 0. )

The coefficients ¢,& and ¢ are exactly determined
when ¢(h) is known for only three values of h; other-
wise, they are computed with a least-squares method
and o is the standard deviation of the fit.

The relative numerical uncertainty due to the spatial

resolution (i.e. with Us, = Us,) is

1.25|1—¢o | +o p>0.95,
Us, 8)

_ hmin

Rmax
where ¢ and ¢, are the maximum and the mini-
mum of ¢(h), whilst Apax and Ay, are the maximum
and the minimum of h. Here the grid uncertainty
is computed through a set of simulations with three
geometrically similar grids with a number of cells
ranging from 7.3 x 10° to 1.94 x 10".

The convergence error is computed by fitting the
computed solution over 10 000 iterations, after having
discarded the first 2000 iterations, with a function that
tends asymptotically to a constant value. The error is
the difference between the asymptotic value and the
solution of the last iteration. The uncertainty is the
product of the error and a factor of safety of 1.25.
Finally, the uncertainty is increased by the standard
deviation of the fit.

The total relative numerical uncertainty is

Up = \/Ug,g + U2, +U2 +Us, 9)
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where Uy, = Us, = 0 in this work. It is noted that Us,
is not under the square root because it is not considered
independent from the other sources of error.

IV. RESULTS

A. Flow field

The constrained streamlines on the blade surface are
presented in Figures 4 and 5 at three tip-speed ratios,
based on the CFD results. Flow separation is observed
at A = 4.52 on the blade suction surface. When the tip-
speed ratio increases to A = 6.03 and A = 7.54, flow
separation is only observed at the blade tip and the
blade root. The region of flow separation near the blade
root shrinks with increasing tip-speed ratios, while
flow separation persists even at high A values near the
tip, as shown in Figure 5. The 3D vortex structures
around the blade are present in Figure 6, which shows
the —2 x 10*U2 /D? isosurface.

@

.

TE |

il

‘.4
et it

=

A=452 A1=6.03 A=1754

Fig. 4. Constrained streamlines on the blade suction surface at tip-
speed ratios 4.52 (a), 6.03 (b) and 7.54 (c).

Fig. 5. Constrained streamlines on the blade surface near the blade
tip (i.e. in the region inside of the red dashed rectangle in Figure 4)
at tip-speed ratios 4.52 (a), 6.03 (b) and 7.54 (c).

B. Uncertainty in the estimate of Cp and Cr

Simulations were carried out for a range of tip-
speed ratios from 4.52 to 7.54. The overall numerical
uncertainty for Cp and Cr for both BEM and CFD
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Fig. 6. Vortex structures around the blade, visualised by isosurface
of lambda-2 criterion, at tip-speed ratios 4.52 (a), 6.03 (b) and 7.54
(OF

is shown in Figure 7. The BEM uncertainty is up to
6.0% for C'p and 2.6% for Cp, while CFD uncertainty is
always within 3.9% for both Cr and Cp. Interestingly,
the uncertainty on Cp is much greater than that on
Cr at high tip speed ratios for both BEM and CFD, a
consequence of the larger uncertainty on the sectional
drag value than on the sectional lift value. It is noted
that the CFD uncertainty is broken down as follows.
The convergence uncertainty Us, is between 0.05% and
0.96% for Cp, and between 0.06% to 0.4% for Cr. The
grid uncertainty Us, is between 0.33% to 3.89% for Cp,
and between 0.02% and 3.59% for Cr.

~+—U, CFD
6 —Uc, CFD
 ——Uc, BEM
——Ug, BEM

Uncertainty (%)

Fig. 7. Uncertainty in the estimate of Cp and Cp with CFD and
BEM for various tip-speed ratios.

C. Power and thrust coefficients

Figure 8 shows Cp computed with BEM, CFD and
the experimental data [3]. BEM underpredicts the
power coefficient with respect to the experiment, and
the error increases with increasing A up to 15.5% at
A = 7.87. The BEM uncertainty, which is shown by
error bars in Figure 8, is much smaller than the error,
suggesting that some critical physics are incorrectly
modelled and that the role of these physics increases

PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3-7 SEPTEMBER 2023, BILBAO

with A. This is potentially associated with the high-
induction correction, which is here implemented using
the Buhl correction [6].

In contrast, the relative error of the CFD prediction
decreases with increasing A: from 8.0% at A = 4.52
to 1.8% at A = 6.53. The error is of the same order
of magnitude as the CFD uncertainty, suggesting that
any modelling error is small or absent relative to the
numerical error.

Figure 9 shows Cr computed with BEM and CFD.
The BEM prediction of Cr is in better agreement with
the experiments than the CFD prediction. The error is
lower than 2.1% at every A. The uncertainty is higher
than the error, suggesting that the error could be due
to the incorrect estimate of the sectional lift and drag,
and thus it is not possible to identify any error due
to incorrectly modelled or neglected physics. The error
in the CFD simulations is 2.3% at A = 5.53 and 1.8%
at A = 6.53 near where Cp is maximum, while it is
higher both at low and high tip speed ratios. Note that
this trend is consistent with that of the uncertainty. At
low tip-speed ratios, the error is up to 7.9% at A =
4.52, and it might be attributed to underpredicted flow
separation.
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Fig. 8. Power coefficient versus the tip-speed ratio computed with
BEM, CFD and comparison with experimental data [3].

D. Sectional force coefficients

We now focus on the difference between the sectional
force coefficients selected by the BEM code and those
computed with CFD. The lift and drag directions de-
pend on the local angle of attack, which is computed
by the BEM for each blade section but is not uniquely
defined in the CFD simulations. Hence, we instead
consider the edgewise and flapwise force components,
i.e. the force components parallel and orthogonal to the
rotor plane, respectively. For each of these, we define
the force coefficient Cr (edgewise or flapwise) as

F(r)

C =
P () 1pUL R

(10)

where F(r) is the sectional force component (edgewise
or flapwise) at the blade spanwise location r.



LIU et al.: ON THE ACCURATE PREDICTION OF POWER AND THRUST OF TURBINES USING BEM AND CFD

1.1 i CFD
§ BEM
1 X Experiment 3 & ;
% %
09| " g «xs B
&~
O ggl # z}i
0.8 % H
0.7+ X
06+ &
0.5 : : ‘ ‘ ‘
4 5 6 7 8

A

Fig. 9. Thrust coefficient versus the tip-speed ratio computed with
BEM, CFD and comparison with experimental data [3].

Figure 10 shows the spanwise distribution of the
edgewise force coefficient Cr cggewise at three tip-speed
ratios. The maximum value of Cr cdgewise is nearer the
root at low A and nearer the tip at high A. For all values
of X\ shown, the prediction from CFD is higher than
that of the BEM over the inboard part of the span, and
the difference increases with decreasing distance from
the root. This discrepancy suggests an excessive root
correction of the force coefficients at the root in the
BEM code, and could be due to the turbine design: the
sections blade sections remain streamlined up to the
hub intersection instead of becoming cylindrical near
the root as in most common designs (see Figure 4).
However, CFD predicts higher values not only close to
the root but for most of the blade span. This difference
in spanwise force coefficients is consistent with the
better match of the experimental power curve by the
CFD than BEM (Figure 8), as the power is given
by the integral of the edgewise force along the span
multiplied by the angular velocity.

Figure 11 shows the spanwise distribution of the
flapwise force coefficient Cr gapwise at three tip-speed
ratios. The maximum value of Crfapwise is reached
at around r = 85%R for each tip-speed ratio, and
CF flapwise increases with A. The force peaks predicted
by BEM are higher and closer to the tip than those
predicted with CFD, while the force is lower near the
root than that predicted with CFD.

E. Bending moment

Experimental data is not available for the flapwise
and edgewise force distributions along the span. In-
stead, the bending moment Mp was measured at 5
locations along the span. The edgewise and flapwise
bending moment at the radial coordinate ' is com-
puted with BEM and CFD as the integral of the first
moment of the edgewise and flapwise force,

R
Mgp(r') = / (r —r")F(r)dr. (11)

v
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Fig. 10. Edgewise force distribution along the blade span for three
tip-speed ratios computed with BEM, CFD.
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Fig. 11. Flapwise force distribution along the blade span for three
tip-speed ratios computed with BEM, CFD.

We define the bending moment coefficient as

MB(T’)

C = —
B (r) %pUgoﬂ'D3

(12)
It must be noted that the bending moment vanishes
at the tip by definition. Differences between BEM, CFD
and experiments would inevitably increase towards the
root. However, the main contributor to the differences
between these curves near the root is mostly due to
differences in the forces nearer the tip rather than the
root, due to the weighting function r in equation 11.
Figures 12 to 14 show the edgewise bending moment
coefficient along the blade span for the BEM and CFD
cases for three A values. The CFD prediction is in
greater agreement with the experiments than the BEM
prediction at tip-speed ratios, except for A = 4.52. The
discrepancy between the BEM and experiment results
increases at higher tip-speed ratios. These results are
consistent with the prediction of Cp shown in Figure 8.
The distribution of the flapwise bending moment
coefficient along the blade span computed with BEM,
CFD, and experimentally is shown in Figures 15 to 17
for A = 4.52, 6.03 and 7.54, respectively. The difference
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Fig. 12. Edgewise bending moment distribution along the blade
span at A\ = 4.52 computed with BEM, CFD and comparison with
experimental data [3].
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Fig. 13. Edgewise bending moment distribution along the blade
span at A = 6.03 computed with BEM, CFD and comparison with
experimental data [3]..

between the values predicted with CFD and BEM is
relatively small compared to the difference with the
experimental values, which are generally lower than
those predicted. However, the BEM results are in closer
agreement with the experiments, which is consistent
with the better agreement in Cr shown in Figure 9.

V. CONCLUSION

In this paper, we computed the loads on a model-
scale tidal turbine based on BEM theory and CFD, and
we compared the results with towing tank tests. We
estimated the uncertainty of the BEM results with a
Monte-Carlo approach based on the difference between
the CFD and Xfoil values of the sectional lift and drag
coefficients, and the uncertainty is below 6.0% for Cp
and 2.6% for Cr. The CFD uncertainty is made of
the grid uncertainty and the convergence uncertainty,
which are below 3.89% and 0.96%, respectively, for
both power and thrust for A from 4.52 to 7.54.

BEM tends to underpredict the thrust by less than
2.3% at any X value, while the power is increas-
ingly underpredicted with increasing A up to 15.5%
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Fig. 14. Edgewise bending moment distribution along the blade
span at A = 7.54 computed with BEM, CFD and comparison with
experimental data [3].
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Fig. 15. Flapwise bending moment distribution along the blade
span at A = 4.52 computed with BEM, CFD and comparison with
experimental data [3].

at A = 7.87. Remarkably, BEM provides an excellent
power and thrust prediction at low A, where CFD
predicts a marked trailing edge separation. In contrast,
CFD tends to overpredict the power and the thrust by
no more than 4.1% around the optimal tip-speed ratio
(A = 6.03), while the error increases up to 8.0% at both
low and high X values. The maximum error of CFD
(8.0%) is about half of that of BEM (15.5%), but both
show give smaller errors at the optimal A.

The uncertainty analysis shows that the differences
between the experimental data and the BEM predic-
tion are within the uncertainty associated with the
imprecise knowledge of the sectional lift and drag
coefficients. The CFD and BEM sectional forces at
the tip and root are substantially different. Still, no
conclusions can be made on the accuracy of the high
induction and edge corrections in the BEM because of
the good prediction of the thrust (within 2.3%). The
CFD numerical uncertainty due to the finite spatial res-
olution and number of iterations is markedly smaller
than the maximum numerical-experimental error at
low and high A values, and it is thus mostly due to
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Fig. 16. Flapwise bending moment distribution along the blade
span at A = 6.03 computed with BEM, CFD and comparison with
experimental data [3].
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Fig. 17. Flapwise bending moment distribution along the blade
span at A\ = 7.54 computed with BEM, CFD and comparison with
experimental data [3].

modelling errors such as the turbulence model, the
neglected support structure and free surface, and the
imprecise knowledge of the input values. Interestingly,
the uncertainty is relatively higher at low and high A
values, where the error is also higher.

Overall these results suggest that CFD allows both a
maximum error and uncertainty that are substantially
smaller than that of BEM, but both methods suffer from
modelling errors that require further investigation.
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