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Abstract—In this paper, the nonlinear geometric 

constraints that arise naturally in hinged structures are 

investigated for floating multi-body wave point absorbers. 

A new method of constraint linearization is proposed and 

applied to a realistic case study. The method is based on 

generalized coordinates, and generates a robust first-order 

dynamic matrix to characterize the multi-degrees of freedom 

hydrodynamic system. The simulation outputs the motion 

response for all floating bodies, as well as the constraint 

force responses, among other parameters. The method 

requires knowledge of the geometries of the system but 

rather few assumptions, namely, to perform the 

linearization of constraints. The method is illustrated with 

the mechanical connection between three wave point 

absorbers to a central Floating Offshore Wind Turbine and 

on-board hydraulic Power-Take Off systems. 

Keywords—Multi-use platforms, renewable energies 

offshore, nonlinear dynamics, nonlinear mechanics, 

response amplitude operators.  

I.  INTRODUCTION….…

HE mathematical and numerical modelling of Wave 

Energy Converters (WECs) and WEC arrays is an

essential step in the development of the wave energy 

industry. Various levels of physical complexity are 

reflected in the modelling of such dynamic systems, e.g. 

from the wave excitation pressure field on the WEC to the 

mooring system dynamics, from the wave radiation 

properties of the WEC to the Power Take-Off (PTO) 

dynamics, due to viscous effects, and so on. Oftentimes, 

the term nonlinear or nonlinearity is employed, because the 

mathematical modelling of the system brings dynamic 

equations to be solved that are indeed nonlinear. 

In the case of wave point absorbers interconnected, or 

connected to a central floating platform, the connection is 

©2023 European Wave and Tidal Energy Conference. This paper 

has been subjected to single-blind peer review.  

The first author has a PhD Scholarship by the Portuguese 

Foundation for Science and Technology (Fundação para a Ciência e 

Tecnologia – FCT), under contract No. SFRH/BD/145602/2019. This 

work contributes to the Strategic Research Plan of the Centre for 

Marine Technology and Ocean Engineering (CENTEC), which is 

financed by the Portuguese Foundation for Science and Technology 

(Fundação para a Ciência e Tecnologia - FCT) under contract 

UIDB/UIDP/00134/2020, and the project “Variable geometry Wave 

normally performed employing hinged-arms. Because 

multi-body hydrodynamics is usually accounted for from 

a global perspective, the appearance of nonlinear 

geometric constraints is unavoidable (a fact that will be 

better explained in the next section). It is a challenge to 

model, both mathematically and numerically, the exact 

multi-degrees of freedom coupled dynamics of 

constrained floating multi-body systems.  

The theoretical analysis of floating systems with 

multiple underwater geometries started over 50 years ago, 

but the application was rather limited to rigid-body 

structures with multiple underwater geometries, as it is 

the case of catamarans and floating stations [1]. 

Nevertheless, important conclusions were drawn in 

regards to the interactions between the different hulls, for 

instance, that those interactions may be particularly 

strong, indeed nearly singular depending upon 

wavelength and the spacing between hulls. 

The analysis of multi-body floating systems for 

application in wave energy farms started by 

demonstrating the generalization of hydrodynamic wave-

structure interaction formulation for multi-body systems 

[2,3]. The development of the field brought many 

important contributions to multi-body hydrodynamics, 

e.g. [4–6], whereas many conclusions have been reviewed

and summarized in [7]. Those studies provide deep insight

into the interactions within WEC arrays composed of

identical floating bodies. Today, the state-of-the-art of

WECs and WEC arrays hydrodynamic modelling also

encompass optimisation and control techniques, for

instance, as done by [8,9].

Recently, researchers have been looking into coupling 

WECs with Floating Offshore Wind Turbines (FOWTs), 

mainly due to the accelerated development of the offshore 

wind industry [10]. However, hybrid wind-wave 
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technology using wave point absorbers is still in TRL 4, 

meaning that hybrid wind-wave technology has been 

validated in laboratories [11-14]. A collection of analyses 

may be found in recent bibliography considering different 

concepts. 

The works done by [15-18], for instance, consider the 

DeepCWind FOWT [19,20] as a central platform, which is 

a validated model of the semi-submersible type. This type 

of configuration has the main advantages of i) being more 

versatile in regards to the water depth, and ii) it allows 

both a greater deck load and larger deck area in 

comparison to the other floating types. The latter 

advantage is, indeed, key for the coupling of WECs and 

hydraulic PTOs on-board. Nevertheless, it is worth 

mentioning that other configurations had also been 

considered in numerical analysis for hybrid wind-wave 

systems, e.g. the NREL OC5 spar platform [21], the 

braceless semi-submersible FOWT [22], and the MIT-

NREL TLP [23]. 

In this paper, a new method based on generalized 

coordinates is shown to generate a robust dynamic matrix 

for the simulation of mechanically-constrained floating 

multi-body systems. The method is here demonstrated in 

the frequency domain, but it is easily extendable to the 

time domain. The method requires knowledge on the exact 

geometries of the system, but rather few assumptions. 

Insights are given into how to model the mechanical 

constraints of complex multi-body systems. The method is 

illustrated with the following case study: The connection 

between three WECs to a central floating platform and 

hydraulic PTOs. The central platform is an adapted 

version of the DeepCWind semi-submersible with a higher 

draft and displacement for a more powerful, 10 MW wind 

turbine. 

II. MATHEMATICAL MODELLING

In this section, the basis of the mathematical model 

developed to analyse mechanically-constrained floating 

multi-body systems is presented in detail. The 

mathematical model has been developed for the 

application in various classes of floating multi-body 

systems, especially WEC arrays, hybrid wind-wave 

technology and other Multi-Use Platform (MUP) types. 

Within the method’s framework, different geometries 

may be considered, as well as different mechanical 

constraints, different amounts of floating bodies, different 

exciting forces, and so on. The major difficulty is normally 

analytical, namely, in the evaluation of the linear 

combinations that relate global motions and global forces 

with generalized motions and generalized forces. Because 

there are many parameters and linearizations to be 

performed, the formulae in sub-section II.C – Hydraulic 

PTOs – is given for the case study at hand, only, whereas 

the other sub-sections contain rather generic formulae. In 

the formulae that will follow, square brackets stand for 

matrixes, curly brackets stand for arrays, and bold stands 

for vectors. 

A. Multi-Body Hydrodynamics

The hydrodynamic problem of wave-structure

interaction between planar Airy waves and a rigid-body 

structure is usually represented, physically, by a mass-

spring-damper system or, mathematically, by a 2nd-order 

linear Ordinary Differential Equation (ODE). If all modes 

of motion are considered, the dimension of the ODE 

system is 6. In a global perspective, when considering 

different floating structures, a first generalization is 

obtained by increasing the dimension of the linear system 

and the number of degrees of freedom (dof) accordingly. 

Then, the addition of constraints reduces the number of 

degrees of freedom in the system. 

On the one hand, at present, commercial and open-

source hydrodynamic software are able to evaluate the 

hydrodynamic forces related to the diffraction and 

radiation wave effects around multiple floating bodies. 

Though the possible amount of different underwater 

geometries is normally a limitation of the software, the 

hydrodynamic coefficients are given in terms of added 

mass, damping and excitation force coefficients rather 

straightforwardly for a global reference. On the other 

hand, the solution of the multi-body dynamic interaction 

is not straightforward if nonlinear mechanical constraints 

are present. 

The assumption of linear separation of potentials is also 

considered in multi-body solvers to obtain the radiation 

and diffraction potentials separately. Because potential 

flow is assumed, the velocity of a fluid particle is given by 

the gradient of the real part of total potential 𝛷, which is 

the sum of diffraction and radiation wave potentials. 

Those may be written in the complex form 

𝛷 ≡ 𝛷(𝑭) = |𝛷(𝑭)| exp 𝑖𝜔𝑡 = 𝛷D + 𝛷R , (1) 

where 𝑭 = (𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹)= the position vector of fluid particle, 

𝛷D = the diffraction potential, and 𝛷R = the radiation 

potential. 

Assuming the mechanical constraints of the system to be 

holonomic, as it is the case of hinged structures, then the 

dynamic equations of the system can be written with 

application of Newton-Euler method. In the frequency 

domain, by assuming potential flow and linear Airy waves 

incidence, the multi-body wave-structure interaction can 

be written as 

[𝑀 +𝑀rad(𝜔)]{𝑥̈} + [𝐵add + 𝐵rad(𝜔)]{𝑥̇} +

[𝐶hyds]{𝑥} = {𝑓e(𝜔)} + {𝑓c} , 
(2) 

where 𝑀 = mass-inertia matrix; 𝑀rad(𝜔) = added mass 

matrix obtained from the radiation potential; 𝐵rad(𝜔) = 

radiation damping matrix; 𝐵add= added damping matrix; 

𝐶hyds= hydrostatic restoring matrix; 𝑥= global coordinates; 

𝑓e(𝜔)= wave excitation force array; and 𝑓c= constraint force 

array. 
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The relations between the potentials in Eq. (1) and the 

coefficients in Eq. (2) may be found in [7]. Clearly, the 

major difference between Eq. (2) and the dynamic equation 

of a floating rigid-body is the unknown array of constraint 

forces. In a Newtonian perspective, the constraint forces 

appear as global forces in the interconnection endpoints of 

the different rigid bodies, and the position of those points 

vary over time. For a hinged-arm, the geometric constraint 

equation, though holonomic, is nonlinear, because it is a 

second-degree polynomial in terms of the global motion 

variables and in the global reference frame 𝑂𝑥𝑦𝑧, meaning 

that the distance between endpoints is constant, and 

equals the length of the arm 

𝐿𝑃𝑄 ≡ ‖𝑷,𝑸‖ ⇒ 

(𝐿𝑃𝑄)
2
= (𝑥𝑃 − 𝑥𝑄)

2
+ (𝑦𝑃 − 𝑦𝑄)

2
+ (𝑧𝑃 − 𝑧𝑄)

2
,

(3) 

where 𝑷 = (𝑥𝑃, 𝑦𝑃, 𝑧𝑃)  and 𝑸 = (𝑥𝑄 , 𝑦𝑄, 𝑧𝑄)= the position 

vectors of the interconnection endpoints (hinged or fixed 

connection), and 𝐿𝑃𝑄= the length of the arm. To solve the 

nonlinear system of Equations (2) and (3) is a hard task to 

perform both analytically and numerically. 

B. Constraint Linearization

The same hydrodynamic problem stated above is here

solved in a different way, namely, by performing a 

constraint linearization that gives away nonlinear Eq. (3). 

For that, all mechanical constraints are accounted, though 

in a linear fashion. The idea is to obtain, for a system with 

𝑁 interconnected bodies, a linear set of 6𝑁 equations and 

variables. First, a robust linearization of the motion 

variables is performed: the 6𝑁  motion variables are 

written in terms of 6𝑁 − 𝐾 generalized coordinates, where 

𝐾 is the number of constraints, or 

{

𝑥1 = 𝐺1(𝑤1,𝑤2,…,𝑤6𝑁−𝐾) = ∑ 𝑔1𝑗𝑤𝑗
6𝑁−𝐾
𝑗=1

𝑥2 = 𝐺2(𝑤1,𝑤2,…,𝑤6𝑁−𝐾) = ∑ 𝑔2𝑗𝑤𝑗
6𝑁−𝐾
𝑗=1

… 

𝑥6𝑁 = 𝐺6𝑁(𝑤1,𝑤2,…,𝑤6𝑁−𝐾) = ∑ 𝑔(6𝑁)𝑗𝑤𝑗
6𝑁−𝐾
𝑗=1

, (4) 

where 𝑤𝑗 = the 𝑗 -th generalized coordinate; and 𝑔𝑖𝑗 = the 

coefficient of the linear combination 𝐺𝑖  representing the 

influence of generalized coordinate 𝑗 on the global motion 

of mode 𝑖. 

The remaining simplifications regard the constraint 

forces. The linearization is performed considering that the 

direction of the constraint forces remains the same at all 

times, corresponding as well to the equilibrium position of 

the system. Then, a total of 𝐾 generalized constraint forces 

shall appear, which may depend on the generalized 

motion variables as well, and also its first and second-

order derivatives, as it is the case of hydraulic PTOs, or 

{𝑓c} =

{𝑓c(𝑤1, 𝑤1̇, 𝑤1̈… ,𝑤6𝑁−𝐾 , 𝑤̇6𝑁−𝐾 , 𝑤̈6𝑁−𝐾 , 𝑦1, … , 𝑦𝐾)} , 
(5) 

and 

{

𝑓c1 = 𝐻1(𝑤1,𝑤1̇ ,𝑤1̈ …,𝑤6𝑁−𝐾,𝑤̇6𝑁−𝐾,𝑤̈6𝑁−𝐾,𝑦1,…,𝑦𝐾)

𝑓c2 = 𝐻2(𝑤1,𝑤1̇ ,𝑤1̈ …,𝑤6𝑁−𝐾,𝑤̇6𝑁−𝐾,𝑤̈6𝑁−𝐾,𝑦1,…,𝑦𝐾)

… 

𝑓c(6𝑁) = 𝐻6𝑁(𝑤1,𝑤1̇ ,𝑤1̈ …,𝑤6𝑁−𝐾,𝑤̇6𝑁−𝐾,𝑤̈6𝑁−𝐾,𝑦1,…,𝑦𝐾)

. (6) 

Thus, 

𝑓c𝑖  =  ∑ (ℎ𝑖𝑗
(0)𝑤𝑗 + ℎ𝑖𝑗

(1)𝑤̇𝑗 + ℎ𝑖𝑗
(2)𝑤̈𝑗)

6𝑁−𝐾
𝑗=1 +

 ∑ ℎ𝑖(6𝑁−𝐾+𝑗)𝑦𝑗
𝐾
𝑗=1 , 𝑖 = 1, … ,6𝑁 , 

(7) 

where 𝑓c𝑖 = the constraint force acting on global motion 

variable 𝑖 ; 𝑦𝑗 = the 𝑗 -th generalized force; ℎ𝑖(6𝑁+𝑗) = the 

coefficient of linear combination 𝐻𝑖  representing the 

influence of the 𝑗 -th generalized force on the global 

constraint force at mode 𝑖, and ℎ𝑖𝑗
(𝑘)= the coefficient of the 

linear combination 𝐻𝑖 representing the influence of the 𝑘-

th derivative of the generalized motion variable j on the 

global constraint force at mode 𝑖. 

The substitution of Equations (4) and (7) back into Eq. 

(1) leads to a 6𝑁 ×  6𝑁 linear system of the form

[𝐴]{(𝑤, 𝑦)̈ } + [𝐵]{(𝑤, 𝑦)̇ } + [𝐶]{(𝑤, 𝑦)} = {𝑓e(𝜔)} , (8) 

where 𝐴 ≡ 𝐴(𝜔) and 𝐵 ≡ 𝐵(𝜔). 

Equation (8) is equivalent in form to the dynamic 

equation of a floating rigid-body, however, with a higher 

dimension and different block structure. Equation (8) may 

be solved in the frequency domain rather 

straightforwardly. It may also be adapted and solved in 

the time domain considering the Cummins Equation 

[24,25], whereas the time domain solution may include 

several additional forces in the right-hand side (RHS), e.g. 

mooring forces (essential to provide station-keeping in 

time domain models), aerodynamic forces, among others. 

C. Hydraulic PTOs

This sub-section shows how to evaluate the matrixes in

Eq. (8) for the case where wave point absorbers are 

connected to a single central platform by means of hinged-

arms and hydraulic PTOs. 

Assuming that the connections between arms and WECs 

are totally rigid, and that the relative motion between the 

arms and the central platform are functions of piston 

motion inside the hydraulic PTO, then it is possible to 

write all motion variables as function of the 6 modes of 

motion of the central platform, plus the 𝑁WEC = 𝑁 − 1 dof 

corresponding to the motions of the hydraulic pistons, 

where 𝑁WEC= the amount of WECs connected to the central 

platform. In the present case, the number of dofs is, 

therefore, 6 + 𝑁WEC , and the number of constraints is 

determined by 6𝑁 − 6 − 𝑁WEC = 5𝑁WEC. Thus, there must 

be 5 constraint force variables per WEC. 

The evaluation of the linear functions 𝐺 depend on the 

geometries of the system and the set of generalized 

coordinates 
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{𝑤} = {𝑤1 , 𝑤2 , … , 𝑤6+𝑁WEC
} . (9) 

Then, 

{

𝑥1  =  𝑤1  
 
⇒ 𝑔11 = 1,𝑔1𝑗 = 0, 𝑗 ≠ 1

…  
𝑥6  =  𝑤6  ⇒ 𝑔66 = 1,𝑔6𝑗 = 0, 𝑗 ≠ 6

𝑥7  =  𝐺7(𝑤1, … , 𝑤6, 𝑤𝑃𝑇𝑂1) = ∑ 𝑔7𝑗𝑤𝑗
6𝑁−𝐾
𝑗=1

…  
𝑥6𝑁  =  𝐺6𝑁(𝑤1, … , 𝑤6, 𝑤𝑃𝑇𝑂𝑁WEC

) = ∑ 𝑔(6𝑁)𝑗𝑤𝑗
6𝑁−𝐾
𝑗=1  

. (10) 

While 𝐺𝑗 depends only on the geometries of the system, 

𝐻𝑗  depends on the model of forces and moments 

considered (e.g. the axial direction of the hinges) and the 

fact that the hinged-arm may share many contact points 

with the central platform, not just one. Therefore, the 

dynamic balance of the arm is required to properly 

evaluate the combinations 𝐻𝑗 . The PTO model is also 

required, because the hydraulic forces act on the 

generalized modes. For instance, if the PTO is aligned with 

the vertical line, the vertical contact force acting on the 

platform around the PTO is given by the reaction of the 

force acting on the piston, that is 

𝑓𝑃𝑇𝑂𝑧 = 𝜇𝑤̈𝑃𝑇𝑂 + 𝛽𝑤̇𝑃𝑇𝑂 + 𝜅𝑤𝑃𝑇𝑂  , (11) 

where 𝜇= the supplementary mass, or inertial parameter of 

the PTO; 𝛽= the damping of the PTO; and 𝜅= the stiffness 

coefficient of the PTO. 

Then, the contact forces acting on the platform around 

the hinge point 𝑷  are evaluated based on 𝑓PTO𝑧  and the 

remaining 5 constraining forces acting on the hinged-arm 

that satisfy the dynamic balance of the arm: 

{𝑓𝑃𝑇𝑂𝑥 , 𝑓𝑃𝑇𝑂𝑦 , 𝑓𝑄𝑥, 𝑓𝑄𝑦, 𝑓𝑄𝑧}  is the set of 5 generalized forces, 

per WEC that were needed. Then, 

{𝑓c} = {𝑓c (
𝑤𝑃𝑇𝑂𝑗 , 𝑤𝑃𝑇𝑂𝑗̇ , 𝑤𝑃𝑇𝑂𝑗̈ ,

𝑓𝑃𝑇𝑂𝑥𝑗 , 𝑓𝑃𝑇𝑂𝑦𝑗 , 𝑓𝑄𝑥𝑗 , 𝑓𝑄𝑦𝑗 , 𝑓𝑄𝑧𝑗
)} . (12) 

If the weight of the arm is neglected, the dynamic 

balance of the arms is given by 

𝒇𝑷𝑻𝑶 + 𝒇𝑷 + 𝒇𝑸 = 𝟎 , (13) 

where 𝒇𝑷𝑻𝑶 = (𝑓𝑃𝑇𝑂𝑥, 𝑓𝑃𝑇𝑂𝑦 , 𝑓𝑃𝑇𝑂𝑧) , 𝒇𝑷 = (𝑓𝑃𝑥, 𝑓𝑃𝑦, 𝑓𝑃𝑧)  and 

𝒇𝑄 = (𝑓𝑄𝑥 , 𝑓𝑄𝑦, 𝑓𝑄𝑧). 

Equations (12) and (13) are linear in terms of motion and 

force variables, and allow to write the global forces in {𝑓𝑐}, 

but not the global moments, whereas these depend, 

further, on the hinge models, for many types of hinges may 

be considered. 

D. Transfer Functions

In this sub-section, Eq. (8) is solved for the case where

the wave excitation force corresponds to a harmonic 

excitation of a given frequency ω. In the frequency 

domain, it is straightforward to evaluate the complex 

transfer functions, or Response Amplitude Operators 

(RAOs) and Response Phase Operators (RPOs), or 

complex RAOs. The first-order excitation of a given 

incoming Airy wave is given by 

𝑓e𝑖(𝜔) = 𝐹𝑖(𝜔) cos(𝜔𝑡 + 𝜑𝑖) , 𝑖 = 1,… ,6𝑁 ,  (14) 

where 𝐹𝑖= the amplitude of the wave excitation force at 

global mode 𝑖; and 𝜑𝑖= its phase relative to 𝛷. 

Equation (14) is equivalent to 

𝑓e𝑖(𝜔) = Re{𝐹𝑖(𝜔) exp 𝑖(𝜔𝑡 + 𝜑𝑖)}, 𝑖 = 1,… ,6𝑁 , (15) 

Then, a harmonic solution is to be found by substituting 

(𝑤, 𝑦) = {
𝑊𝑗 cos(𝜔𝑡 + 𝜓𝑗) , 𝑗 = 1,… ,6𝑁 − 𝐾

𝑌𝑗 cos(𝜔𝑡 + 𝜓𝑗) , 𝑗 = 6𝑁 − 𝑘 + 1,… ,6𝑁
(16) 

in Eq. (8), or 

(𝑤, 𝑦)𝑗 = {
Re{𝑊𝑗 exp 𝑖(𝜔𝑡 + 𝜓𝑗)}, 𝑗 = 1,… ,6𝑁 − 𝐾

Re{𝑌𝑗 exp 𝑖(𝜔𝑡 + 𝜓𝑗)} , 𝑗 = 6𝑁 − 𝑘 + 1,… ,6𝑁
 , (17) 

then, 

(𝑤, 𝑦)𝑗̇ = {
Re{𝑖𝜔𝑊𝑗 exp 𝑖(𝜔𝑡 + 𝜓𝑗)}, 𝑗 = 1,… ,6𝑁 − 𝐾

Re{𝑖𝜔𝑌𝑗 exp 𝑖(𝜔𝑡 + 𝜓𝑗)} , 𝑗 = 6𝑁 − 𝑘 + 1,… ,6𝑁
 , (18) 

and 

(𝑤, 𝑦)𝑗̈ = {
Re{−𝜔2𝑊𝑗 exp 𝑖(𝜔𝑡 + 𝜓𝑗)}, 𝑗 = 1,… ,6𝑁 − 𝐾

Re{−𝜔2𝑌𝑗 exp 𝑖(𝜔𝑡 + 𝜓𝑗)} , 𝑗 = 6𝑁 − 𝑘 + 1,… ,6𝑁
 , (19) 

where 𝑊𝑗 = the response amplitude of motion in 

generalized mode 𝑗 ; 𝑌𝑗 = the response amplitude of the 

generalized force 𝑗; and 𝜓𝑗= their phase. 

Substituting Equations (15) to (19) back into Eq. (8), a 

new form is attained: 

Re {[−𝜔2[𝐴] + 𝑖𝜔[𝐵] + [𝐶]] ∙ {(𝑊, 𝑌) exp 𝑖(𝜔𝑡 + 𝜓)}} 

= Re{𝐹(𝜔) exp 𝑖(𝜔𝑡 + 𝜑)} . 
(20) 

Because oscillatory motion is concerned, it is possible to 

look at the mathematical problem in the following way: 

The left-hand side (LHS) and RHS of Eq. (8) assume real 

values only, but they may be seen as the real parts of the 

complex numbers inside brackets shown in Eq. (20). Even 

though there are infinite complex numbers with the same 

real part, when writing the complex numbers as in Euler’s 

formula, it is clear they oscillate with the same frequency 

𝜔. If the complex numbers are not the same but have the 

same real part at one instant, then there is another instant 

where they do not share the same real part. Thus, the only 

possible solution is that the complex numbers in the LHS 

and RHS must be the same, that is, 
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[−𝜔2[𝐴] + 𝑖𝜔[𝐵] + [𝐶]] ∙ {(𝑊, 𝑌) exp 𝑖(𝜔𝑡 + 𝜓)} =

{𝐹(𝜔) exp 𝑖(𝜔𝑡 + 𝜑)} . 
(21) 

Expanding the Euler’s formulae, a solution is 

numerically obtained by solving the linear system 

[𝐶 − 𝜔
2𝐴 −𝜔𝐵

𝜔𝐵 𝐶 − 𝜔2𝐴
] ∙ {

(𝑊, 𝑌) cos𝜓
(𝑊, 𝑌) sin𝜓

} = {
𝐹(𝜔) cos𝜑

𝐹(𝜔) sin𝜑
} . (22) 

Mathematically, a solution to the system above is given 

by 

{
(𝑊, 𝑌) cos𝜓
(𝑊, 𝑌) sin 𝜓

} = 𝛬−1 {
𝐹(𝜔) cos𝜑

𝐹(𝜔) sin 𝜑
} , (23) 

where 

𝛬 = [
𝐶 − 𝜔2𝐴(𝜔) −𝜔𝐵(𝜔)

𝜔𝐵(𝜔) 𝐶 − 𝜔2𝐴(𝜔)
] , (24) 

given that the determinant of 𝛬 is not zero. However, it is 

important to mention, linear solvers may be more accurate 

by solving Eq. (22) than the direct calculation by matrix 

inversion, especially for near-singular matrixes, that 

appear, for instance, when one or more modes of the 

system are not active (e.g. no forces nor motions in yaw).  

Finally, the complex RAOs are given by 

(𝑊𝑗 , 𝑌𝑗  ) = √((𝑊𝑗 , 𝑌𝑗  ) cos𝜓𝑗)
2
+ ((𝑊𝑗 , 𝑌𝑗 ) sin𝜓𝑗)

2
,  

𝑗 = 1,… ,6𝑁 , 
(25) 

and 

𝜓𝑗 = atan (
(𝑊𝑗,𝑌𝑗 ) sin𝜓𝑗

(𝑊𝑗,𝑌𝑗 ) cos𝜓𝑗
) , 𝑗 = 1,2, … ,6𝑁 , (26) 

𝑤here the inverse tangent function considers the 4 

quadrants of the Cartesian plane (or, the signs of both 

numerator and denominator in Eq. (26)). 

Last but not least, the global motion responses are also 

obtained in the form of complex RAOs, by combining the 

complex solutions of Equations (25) and (26) according to 

Eq. (4). 

III. ANALYSIS

The analysis is conducted for a hybrid wind-wave 

system consisting of a semi-submersible FOWT, namely 

the adapted version of the DeepCWind platform, coupled 

with 3 wave point absorbers, as shown in Fig. 1. The 

adaptation was made for the accommodation of a 10 MW 

wind turbine, that is, near the market standard of FOWT 

today. Figure 1 illustrates the size and shape of the WECs 

and the arms’ length in comparison to the platform, but 

without reproducing them in scale. 

The results in this section are shown for 10 meter 

diameter WECs of conical form and square tip angle.  The 

distance between the brace of the FOWT and the centre of 

the WEC, or the horizontal distance between points P and 

Q, is 20 meters. The results are plotted in Fig. 2 in the form 

of FOWT pitch RAOs, because pitch motion is essential to 

the proper functioning and higher efficiency of the turbine, 

it is a rather important aspect to look out for when 

studying hybrid wind-wave systems. For comparison, the 

pitch RAO of the system is plotted against the single-body 

RAO of the platform and the RAO when only 

hydrodynamic coupling is accounted for. The results are 

drawn for 30 frequencies equally distant. In further 

analysis, more frequencies should be employed so the 

plots do not suffer from the straight lines’ discretization. 

In Fig. 2, the pitch RAOs demonstrate that both 

hydrodynamic interaction and mechanical interaction do 

affect the dynamic behaviour of the central platform in the 

pitch motion. 

Regarding the hydrodynamic interaction, because the 

WECs are much smaller than the central platform, the 

pitch of the platform starts to respond in smaller waves 

when compared to the single-body platform, i.e. at the 

high-frequency range. In the low-frequency range, energy 

is being captured by the resonant mode of the central 

platform due to wave interactions, evidenced by the 

amplification of response around the period of 30.0 

seconds, whereas within the wave-frequency range, the 

hydrodynamic interaction leads to smaller pitch motions. 

Figure 2 shows that, when also considering the 

mechanical constraints of the system, the energy around 

the resonance can be mitigated due to the coupled 

dynamics with the WEC-PTO system. The influence is 

clear from the low- to the wave-frequency range, whereas 

in the high-frequency range the influence is rather small, 

because at high frequencies inertia dominates but the 

inertia of the WECs and PTO is indeed much smaller than 

the inertia of the FOWT. 

Fig. 1.  Illustration of the hybrid wind-wave energy system 

consisted on the adapted version of the DeepCWind for a 10.0 MW 

wind turbine and 3 wave point absorbers. (Grant contract 

PTDC/EME-REN/0242/2020). 
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Last but not least, the results in Fig. 2 show, overall, that 

the averaged pitch motion of the FOWT may be mitigated 

depending on a suitable hybrid system. 

IV. CONCLUSIONS

In this paper, a method based on generalized 

coordinates is presented in detail. The formulation is put 

in a rather generic way for the application in various types 

of WEC arrays, hybrid wind-wave systems and other 

MUPs. The application of the new formulation is 

illustrated with an example of practical interest, that is, of 

a 10 MW FOWT coupled with wave point absorbers. 

The application of the method reduced the complexity 

of the hydrodynamic system by giving away the nonlinear 

geometric constraints equation that appears due the 

connection of the different floating bodies. The 

formulation accounts for the whole set of linear 1st order 

influences of all hydrodynamic and mechanical 

interactions involved, by considering the exact geometries 

and the hydraulic PTO parameters. 

The section on analysis presented rather preliminary 

results for the investigated case study. The results, though, 

illustrated the time efficiency of the method. The 

numerical solutions are obtained by solving a linear 

system, which may be performed fast even in a home 

computer. Due to the time efficiency of the method, it can 

be used, for instance, in optimization algorithms for the 

best selection of PTO parameters and wave point 

absorbers geometries for different types of central 

platforms. 

Lastly, to exemplify how the method can be used in 

optimization, it is straightforward to treat many 

parameters so far considered (contact points, inertia 

models, PTO models, etc.) as variables for optimization. 

Then, providing the constraints (e.g. maximum stroke, 

maximum loads, maximum PTO pressure, etc.) and 

objective, or multi-objective function (e.g. maximization of 

WECs’ energy output/minimization of FOWT pitch 

motion), nonlinear optimization algorithms shall find the 

best values for the optimization variables. The drawback 

of this method is that, because the multi-body 

hydrodynamic coefficients are required, it is necessary 

perform a diffraction/radiation run for each underwater 

geometry analysed, which varies when a different WEC 

shape or diameter is selected, or due to different spacing 

between WECs and central platform. Still, given a good 

preliminary set of underwater geometries, it may be 

possible as well to perform a finite set of optimization runs 

allowing the user to select an optimum WEC-PTO model 

for its central platform. 

REFERENCES 

[1] M. Ohkusu, “On the heaving motion of two circular cylinders 

on the surface of a fluid,” Rep. Res. Inst. Appl. Mech., vol. 27(58), 

pp. 167–185, 1969. 

[2] K. Budal, “Theory for absorption of wave power by a system of 

interacting bodies,” J. Ship Res., vol. 21(4), 248, 1977.

[3] J. Falnes, “Radiation impedance matrix and optimum power

absorption for interacting oscillators in surface waves,” Appl.

Ocean Res., vol. 2(2), pp. 75-80, 1980.

[4] P. McIver, “Some hydrodynamic aspects of arrays of wave-

energy devices,” Appl. Ocean Res., vol. 16, pp. 61-69, 1994.

[5] S. A. Mavrakos, and P. McIver, “Comparison of methods for

computing hydrodynamic characteristics of arrays of wave

power devices,” Appl. Ocean Res., vol.19, pp. 283-291, 1997. 

[6] S. Chakrabarti, “Hydrodynamic interaction forces on multi-

moduled structures,” J. Ship Res., vol. 21(4), 1037-1063, 1999. 

[7] J. N. Newman, “Wave effects on multiple bodies,” Hydrodyn.

Ship Ocean Eng., vol. 3, pp. 3-26, 2001. 

[8] C. J. Fitzgerald, “Optimal configurations of arrays of wave-

power devices,” Master thesis, National University of Ireland,

Cork, Ireland, 2006. 

[9] P. Balitsky, “Modelling controlled arrays of wave energy 

converters,” Master thesis, National University of Maynooth,

Ireland, 2013. 

[10] H. M. Diaz, and C. Guedes Soares. Review of the current status, 

technology and future trends of offshore wind farms. Ocean 

Eng., vol. 209, 107381, 2020 

[11] T. S. Hallak, J. F. Gaspar, M. Kamarlouei, M. Calvário, M. J. G.

C. Mendes, F. Thiebaut, and C. Guedes Soares, “Numerical and

experimental analysis of a hybrid wind-wave floating 

platform’s hull,” in Proc. ASME 37th Int. Conf. Ocean Offshore

Arct. Eng., V11AT12A047, Madrid, Spain, Jun, 2018. 

[12] J. F. Gaspar, T. S. Hallak, and C. Guedes Soares, “Semi-

submersible platform concept for a concentric array of wave 

energy converters,” In Advances in Renewable Energies Offshore, 

C. Guedes Soares (Ed.), Taylor & Francis Group, pp. 307-314, 

London, 2018. 

[13] M. Kamarlouei, J. F. Gaspar, M. Calvário, T. S. Hallak, C.

Guedes Soares, M. J. G. C. Mendes, and F. Thiebaut,

“Prototyping and wave tank testing of a floating platform with 

point absorbers,” in Advances in Renewable Energies Offshore, C.

Guedes Soares (Ed.), Taylor & Francis Group, pp. 422-428,

London, 2018. 

[14] M. Kamarlouei, J. F. Gaspar, M. Calvário, T. S. Hallak, M. J. G. 

C. Mendes, and F. Thiebaut, “Experimental analysis of wave 

energy converters concentrically attached on a floating offshore

platform,” Renew. Energ., vol. 152, pp. 1171-1185, 2020. 

[15] T. S. Hallak, D. Karmakar, and C. Guedes Soares, 

“Hydrodynamic performance of semi-submersible FOWT

Fig. 2.  FOWT Pitch RAOs in different scenarios. (Grant contract 

PTDC/EME-REN/0242/2020). 



496-7 

combined with point-absorber WECs,” In Developments in 

Maritime Technology and Engineering. CRC Press, pp. 577-585, 

2021. 

[16] Y. Si, Z. Chen, W. Zeng, J. Sun, D. Zhang, X. Ma, and P. Qian,

“The influence of power take-off control on the dynamic 

response and power output of combined semi-submersible

floating wind turbine and point-absorber wave energy 

converters,” Ocean Eng., vol. 227, 108835, 2021.

[17] H. R. Ghafari, H. Ghassemi, and G. He, “Numerical study of 

the Wavestar wave energy converter with multi-point-absorber

around DeepCWind semisubmersible floating platform,” Ocean

Eng., vol. 232, 109177, 2021. 

[18] Z. Chen, J. Yu, J. Sun, M. Tan, S. Yang, Y. Ying, P. Qian, D. 

Zhang, and Y. Si, “Load reduction of semi-submersible floating 

wind turbines by integrating heaving-type wave energy 

converters with bang-bang control,” Front. Energy Res., vol. 10,

929307, 2022. 

[19] A. N. Robertson, F. Wendt, J. M. Jonkman, W. Popko, H.

Dagher, S. Gueydon, J. Qvist, F. Vittori, J. Azcona, E. Uzunoglu,

C. Guedes Soares, R. Harries, A. Yde, C. Galinos, K. Hermans, J.

B. de Vaal, P. Bozonnet, L. Buoy, I. Bayati, R. Bergua, J. Galvan,

I. Mendikoa, C. B. Sanchez, H. Shin, S. Oh, C. Molins, and  Y. 

Debruyne. OC5 Project Phase II: Validation of Global Loads of 

the DeepCwind Floating Semisubmersible Wind Turbine . 

Energy Procedia, vol. 137, pp. 38-57, 2017. 

[20] A. N. Robertson, J. Jonkman, M. Masciola, H. Song, A. Goupee, 

A. Coulling, and C. Luan, “Definition of the semisubmersible 

floating system for phase II of OC4,” TP-5000-60601, National

Renewable Energy Laboratory, USA, September, 2014.

[21] D. M. Skene, N. Sergiienko, B. Ding, and B. Cazzolato, “The

prospect of combining a point absorber wave energy converter

with a floating offshore wind turbine,” Energies, vol. 14, 7385,

2021. 

[22] W. Shi, J. Li, C. Michailides, M. Chen, S. Wang, and X. Li.,

“Dynamic load effects and power performance of an integrated 

wind-wave energy system utilizing an optimum torus wave

energy converter,” J. Mar. Sci. Eng., vol. 10, 1985, 2022. 

[23] H. Kim, E. Min, S. Heo, and W. C. Koo, “Motion analysis of a

wind-wave energy TLP platform considering second-order

wave forces,” J. Ocean Eng. Tech., vol. 36(6), pp. 390-402, 2022. 

[24] W. E. Cummins, “The impulse response function and ship 

motions,” Schiffstechnik, vol. 47, pp. 101-109, 1962. 

[25] T. S. Hallak, M. Kamarlouei, J. F. Gaspar, and C. Guedes Soares,

“Time domain analysis of a conical point-absorber moving 

around a hinge,” In Trends in Maritime Technology and

Engineering, Guedes Soares, C., Santos, T. A. (Eds.), Taylor & 

Francis Group, vol. 2, pp. 401-409, 2022. 

HALLAK et al.: DYNAMICS OF WAVE POINT ABSORBERS CONNECTED TO A CENTRAL FLOATING PLATFORM 




