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Comparison of physics-based and machine
learning methods for phase-resolved
prediction of waves measured in the field

Jialun Chen, Thobani Hlophe, Wenhua Zhao, Ian A. Milne, David Gunawan,
Adi Kurniawan, Hugh Wolgamot, Paul H. Taylor, and Jana Orszaghova

Abstract—Phase-resolved predictions of surface waves
can be used to optimize a wide variety of marine applica-
tions. In this paper, we compare predictions obtained using
two independent methods for field data, with horizons
sufficient to control wave energy converters.

The first method is physics-based prediction. In this
method, a set of optimal representative angles, obtained
using an optimization algorithm given time histories of a
wave buoy motion in 3D, are used for forward propagation
based on linear wave theory. The second method is a ma-
chine learning method using an Artificial Neural Network
(ANN) which requires longer records for training.

Field measurements were obtained from the Southern
Ocean of Albany, WA. The field data were collected by an
upwave “detection” array of 3 Sofar Spotter wave buoys and
a downwave ‘prediction” point coincident with a Datawell
Waverider-4. All buoys were soft-moored, and data were
collected over 3 months in 2022. Selected intervals during
this period are presented in the paper to compare and
contrast the predictions made by the two different methods.
We find that some wave fields can be predicted well
over more than a period in advance, all that is required
for active control of a power take-off in a wave energy
application. In contrast, highly spread sea states remain
a challenge. The methods are also compared in terms of
the complexity and time required for making predictions.
Further discussions are made on the applicability of the
results to other locations.

Index Terms—Wave prediction, Machine learning, Wave
buoys, Field data, Wave phase, Control.

I. INTRODUCTION

EAL-TIME phase-resolved wave prediction is

highly desirable to ensure the safety and ef-
ficiency o f v arious o ffshore o perations. T he present
study is motivated by the potential of wave prediction
to enhance the economic viability of wave energy con-
verters (WECs). Previous studies have demonstrated
that a dramatic increase in power output can be
achieved by actively controlled WECs [1], [2]. In [3],
it is shown that accurate wave prediction of up to two
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wave periods is of great importance for WEC control—
beyond that, the benefit does not justify the complexity
of wave prediction. Additionally, large ocean waves
pose a serious threat to WECs as they operate remotely
in all various weather conditions, including during
severe storms. Prediction of incoming waves could
help ensure their survival and increase their lifespan.

Although the desired quality of predictions is
application-specific, WEC control is expected to require
prediction of the highest quality. However, accurate
wave predictions are challenging to obtain, especially
in the field, due to large directional wave spreading,
which can result from swells coming from different
storm sources, and local refraction due to sea-bed
topography. Even with a large number of wave records,
the many directional components comprising the wave
field make it difficult to extract information on the
initial phase shifts, required to accurately reconstruct
the wave field at local spatial locations based on a finite
number of plane waves.

Given the complexity presented by large wave
spreading, there is a handful of research papers dis-
cussing highly spread waves, typical of real ocean
waves. One of the few physics-based models is the
optimized algebraic model of Hlophe et al. [4] based on
the fast Fourier transform (FFT). The algebraic model,
which is a novel development of the work [5], forms
the basis of one of the methods compared here. The
algebraic model was shown to be capable of achieving
highly accurate predictions using 9 input records from
sea states with spreading angles o¢ < 25°, where oy is
the standard deviation of a normal distribution used
to describe wave propagation. Similar to the scheme
of Fisher et al. [6], also validated using real ocean
waves, the present algebraic model exploits all three
degrees of freedom (DoF) translational displacements
of each buoy: one vertically and two horizontally along
the cardinal north and east. This significantly simpli-
fies the deployment process that would be required
with heave-only buoys or sensors as used in [5], [7].
Furthermore, the model employs a single frequency-
independent set of directions to represent wave prop-
agation, following [7], though frequency-dependent
spreading is allowed.

An alternative approach is a machine learning
method based on an Artificial Neural Network (ANN)
that can learn complex relationships between input and
output data. Using synthetic unidirectional waves, it
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has been shown in [8] and [9] that ANN-based models
can provide more accurate predictions over linear wave
theory predictions. Further, Zhang et al. [10] applied
Bayesian Neural Networks, which extend standard
neural networks with Bayesian inference, to quantify
prediction uncertainty using wave tank data. However,
the capability of spreading waves using ANN-based
models is unknown and requires further investigation.

In this work, we compare the two different ap-
proaches: the physics-based algebraic model developed
by [4] that propagates optimal directional components
from buoy measurements based on linear dispersion,
and the ANN-based model which is trained using
past records of buoy measurements. As demonstrated
previously in [4], the algebraic model can achieve
accurate prediction (with error £ < 0.1) for approxi-
mately a few wave periods ahead with reasonably large
spreading angles. To understand, at least partially, the
difficulties with very large wave spreading angles, we
explore the performance of ANN in spreading waves.
This paper aims to show the advantages and limita-
tions of using the machine learning method compared
to the physics-based method based on synthetic and
field data.

II. DIRECTIONALLY SPREAD WAVE FIELDS

Real-time wave prediction becomes particularly
challenging when dealing with large directional
spreading, as elucidated in [11] using a mathemati-
cal expression for the variance of a prediction. Ad-
ditionally, field data inevitably includes variability in
environmental conditions such as wind, tides, and
currents that can affect the behaviour of the waves
and the array shape. It is also subject to measurement
and interpretation errors, which need to be carefully
evaluated and accounted for in the analysis. Hence, the
complexity of field wave data makes it more difficult to
predict accurately compared to ‘clean’ synthetic wave
data. This study considers both synthetic and field
wave data to provide a comprehensive understanding
of the performance of physics-based and ANN-based
models under different scenarios. Synthetic data can
be generated under controlled conditions, allowing for
a systematic comparison of the performance of the
models, while field wave data is essential for compar-
ing the performance of the models under real-world
conditions.

A. Synthetic waves

The synthetic wave field is generated from a 2D
wave spectrum, given as a product of a frequency
spectrum S(w) and a directional spreading function
D(w, 8), according to

S(w,0) = S(w)D(w,0), (1)

where w is the angular frequency and 6 is the plane-
wave propagation direction. In this work, angular
spreading is assumed as a frequency-independent
wrapped normal distribution:

D) = — T exo (—(92‘0 ?2), @
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where € is a constant used to ensure a total probability
of one in the finite band of 6, @ is the mean wave
direction, and oy is the standard deviation of the distri-
bution representing the size of wave spreading. Here,
we assume that the directional spreading is frequency-
independent; however, in general, both 6 and oy can
be functions of frequency. We mention in passing that
for the commonly used cos* 6/2 spreading function,
the spreading parameter s is related to oy (given in
radians) in (2) through s = 2/0?2.

The linear surface wave elevation 7(x,t) (to be pre-
dicted in this work) can be represented with random
amplitudes related to Eq. (1) using a double summation
in frequency and direction [12]:

N, Np

’I](X, t) = ZZAU COS (71(1{” 'X*&thﬁ*Eij)), (3)

j=1i=1

where A;; are the wave amplitudes for each com-
ponent, t is time, ¢; are the initial phase shifts,
x = (z,y) is the position in the horizontal plane,
k;; = k;(cosb;,sin0;) are the wavenumber vectors with
components in the 2 and y directions, IVy is the number
of directional components and N, is the number of
frequency components. The wavenumber, k¥ = [k|,
is related to the wave frequency through the linear
dispersion relation:

w? = gk tanh(kd), 4)

where g is gravitational acceleration and d is a constant
water depth.

B. Field wave measurements

Wave data were collected from July 21, 2022, to
October 16, 2022, in the Southern Ocean at Sand-
patch, Albany, Western Australia, using 3 Sofar Spotter
buoys and one Datawell Waverider-4 (DWR4) buoy
(see Fig. 1). These recorded displacements in all three
degrees of freedom: surface elevation and the horizon-
tal components to the east and north. The Spotter is
a 042 m diameter spherical buoy powered by solar
panels, which measures waves at 2.50 Hz with the
GPS position every minute, while the DWR4 has a
0.90 m diameter hull with a battery and electrical
components that measure waves at 2.56 Hz with GPS
position every 24 and 10** minutes. The location of
the deployment is approximately 1 km offshore in a
water depth of 33 m and the buoys were anchored to
the seafloor using conventional mooring. Fig. 2 depicts
the watch circles and anchor positions (at the center of
the circles) of the Spotters and DWR4. It is noted that
the discrepancy in the size of watch circles is due to
the different mooring systems used—the DWR4 was
already deployed for oceanographic research purposes,
while the three Spotters were specifically deployed for
wave prediction. It is important to consider the poten-
tial impact of using different types of buoys on the
quality and comparability of the wave data collected
and to account for any potential biases or sources of
error in data analysis. This will be discussed in Section
IV-B. It should also be noted that the anchor of the
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Spotter 1 was displaced by 10 m around September
15, and the DWR4 stopped recording at around 12:00
on August 26 until August 28. Although the reasons
for these incidents are unknown, such occurrences are
to be expected in the field.
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Fig. 1. (a) Sofar Spotter buoy, and (b) Datawell Waverider-4 (DWR4)
buoy deployed in the Southern Ocean, near Albany, from 21 July to
16 October 2022.
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Fig. 2. Watch circles (dotted lines) and anchor positions of Spotters
(black markers) and DWR4 (red marker). The green arrow denotes
the average mean wave direction. The grey shading area represents
the allowable range of movement restrained by the mooring line.
The shoreline is roughly 1km north of the wave array and runs
approximately East-southeast to west-northwest. The buoy array is
aligned along the mean wave direction towards the north-northeast.

III. METHODOLOGY

This paper compares predictions obtained using the
physics-based algebraic model in [4] and a machine
learning model based on ANN. The algebraic model
uses a set of optimal representative angles derived
from the time histories of wave buoy motion, which
are then used for forward propagation based on lin-
ear wave theory.In contrast, the ANN-based model
is trained on the longer record of field data to learn
and capture the complex relationships between up-
wave and downwave buoy motions without relying
on any hydrodynamic equations or assumptions. By
comparing these two models, we aim to gain valuable
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insights into the advantages and limitations of physics-
based and ANN-based models, aiding in their further
development for practical applications.

A. The algebraic model

The linear prediction model is fully presented in [4].
To reconstruct a single-frequency component, the sur-
face elevation is represented by the complex amplitude

n(x,w) = Z {Aiexp (—ie;)} [exp (—ik; - x)], (5)

while the two corresponding horizontal in-plane dis-
placements are given by

M . —igk; .
C(X,w)—Z{Aiexp(lq)}{ o exp ik %)

(6)

where M ~ 5 is the number of representative angles
¥; used to describe wave propagation in the whole
field, i.e. k; = k(cosd;,sind;). Note that we use the
second argument ¢ or w on the left-hand side of the
equations, e.g. Egs. (3) and (5), to indicate their time-
and frequency-domain representations, respectively.

The terms in square brackets ([e]) in Egs. (5) and (6)
refer to the buoy locations x and the representative
angles ¥;, which are known beforehand. However, the
terms in curly brackets ({e#}) are unknown and need
to be estimated. To accomplish this, we formulate an
over-determined system of linear equations, for a small
number of buoys N, of the usual form

Ap =q, ()

where A is a (3N, x M) complex coefficient matrix,
p is a (dim(p) = M) vector containing the unknown
complex amplitudes and q is a (dim(q) = 3N;,) vector
of the Fourier amplitudes of the concurrently measured
records (the 3 arises from the 3 DoF per buoy). It is
recommended that the condition 3N, > M is always
satisfied. The system can be solved using least-squares
methods in a very straightforward way—we employ
singular value decomposition (SVD) in this paper.
The array A3 and sets of representative directions 19
were solved for in an extensive optimization process
detailed in [4]. The optimization is based on the min-
imization of an objective function, which is the time-
averaged prediction error, i.e. the average of the error
(Eq. (10)), in the forecast zone, before the rapid rise in
the curves (see Fig. 6). Sets comprised of 4 directions,
|9 = 4, are found to give more accurate predictions
for op > 19°, while 5 directions are preferred for less
spreading [13]. Since we are analyzing the same data
as [13], where the spreading exceeds 20°, we will use
the symmetric and asymmetric sets of representative
angles, denoted ¥ 43 and 9%, respectively, given by

943 = 0.4 + {—1.535,—0.448,0.448, 1.535 } oy

8
9% = 04 + {—1.539, —0.287,0.294, 1.307} 0y, ®

where 64 is the pointing direction of the array calcu-
lated from the positions of Spotter 1 and the DWR4.
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The full model sequentially executes the following
operations: (1) inputs ocean wave records of N, x3 DoF,
(2) computes the autocorrelation function and its time
derivatives up to the third from a single surface el-
evation record, (3) extends the ends of each record
using NewWave terms [14], (4) uses the FFT to obtain
the complex amplitudes in q of Eq. (7) and solves the
system via SVD, and finally (5) predicts the surface
elevation at the location x; of the DWR4 based on
linear wave propagation and inverse FFT.

An extension of the algebraic model employs inverse
variance weighting (IVW) to obtain a composite pre-
diction from multiple sets of propagation directions.
The inverse of the variance of a prediction determines
the level of accuracy which can be used to infer the
‘weight’ of that particular prediction. It is straightfor-
ward to apply IVW on synthetic data compared to
field data since the weights are estimated from the
numerical error, which needs to be computed from
multiple realizations in a controlled sea-state environ-
ment. Therefore, for numerical data used in this paper,
we employ the IVW, while we use 9%, for field data
as done in [13].

B. Artificial Neural Network model

An ANN model is a type of machine learning algo-
rithm that is inspired by biological nervous systems.
It is capable of approximating complex relationships
between input values, denoted as X, and output val-
ues, denoted as Y. The objective of an ANN model
is to identify the optimal approximation function F,
by learning the values of parameters W and b, where
Y = F(X;W,b), with W denoting set of weights vector
and b set of bias terms. See [15], [16] for more details.

A wave prediction scheme using an ANN model can
be summarized into the following steps: (1) The wave
record is split into 3 segments: training, validation,
and testing data. The training data provide examples
for learning and fitting the parameters (i.e., weights
and biases) of the ANN model. (2) The validation
data help to tune hyper-parameters (i.e., numbers of
layers, neurons, learning rate), avoiding over-fitting
and validating the effectiveness of the model. (3) The
testing data evaluate the prediction performance after
training. Note that the training and prediction scheme
for synthetic and field data are applied independently.

The schematic of the training process is illustrated
in Fig. 3. The time histories of the surface elevation
and horizontal displacements (along the cardinal east
and north) of the three Spotters at upwave locations
are used as input to map the surface elevation at
DWR4 downwave, using the approximation function
F. Consider three data streams (horizontal displace-
ments (,, (y, and surface elevation 77) measured by each
Spotter, denoted by S, € {(;(x;,t), (y(x:,t),n(x;,t)} for
i = 1,2,3, where the subscript ¢ denotes the Spotter
index. The surface elevation of DWR4 at position x4
can be approximated by the function as

n(x4,t) = F(S1, 52,53, W,b) . )
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We rearranged approximately 6 hours of training
data into approximately 20000 sets using a sliding
window technique with a sliding offset of 1 s. Each
training set consists of 204.5 s of input and 264.5 s
of output (—204.5 < t < 0 s for reconstruction and
0 <t < 60 s for forecasting). The obtained predic-
tions are compared with the target values using the
loss function (here, mean square error). The model is
optimized by updating the network parameters (ie.,
weights and biases) iteratively until the loss function
reaches a minimum or stopping criterion.

Present

|
<«————— Past measurements E——

v

/;1/\/\/\,\/\J\/\/\‘\/L/\_/\/\/\f\,-/\/\":
“ 0
~| 52 !
gl= |
£- 5?/\/\/\~/\/V\/\/\/\/\/\/\/W
Q| v |
%0
LE-1 1
(=1 |
R VAVAVAVAV A VAVAVAS S VaVaVaY,
PE !
[ —
£151 |
21 LN \NANANNNANANN
Q| -1 |
@ T |
S| |
FT PR A A A "~ A ,\I
gl=y !
e
g1z )
195) iy . /,1'
[N \ /1
L -1 1
-200 -40 6
!
|
|
|
|
i
i
1
ANN model i
!
|
FS08, S5 W) | T~
i Update W, b
|
:
. :
<+«————— Reconstruction ———— '+ Forecast »
z 2 =
=
S !

-200 -160 -120 -80

Fig. 3. Training process of the ANN model for wave prediction. The
time history of surface wave elevation () and horizontal displace-
ments (Cz,y) of three Spotters at upwave locations are measured to
map the surface wave elevation of DWR4 at the downwave location.

Based on sensitivity analysis, the ANN model is
carried out using two hidden layers, each with 150
neurons. We select the rectified linear unit (ReL.U) [17]
as the activation function and Adam optimizer [18] as
the gradient descent algorithm with the learning rate
of 1072 and a batch size of 128. An early stoppage is
applied to stop the training process at a point when
performance on a validation set decreases to prevent
over-fitting. The ANN model is implemented in Python
using the Keras [19] and Tensorflow [20] packages
using a computer with an 8-core CPU, 14-core GPU,
and 16GB RAM. The computation time for training
takes approximately 5 minutes using the wave records
from the past 6 hours, and predictions for the next hour
are completed within a fraction of a second.
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Fig. 4. Comparison of predictions from the algebraic and ANN models for a single realization from a synthetic sea state with spreading angle
op = 20°, and mean wave direction § = 0°. The vertical dashed line divides the predicted output into reconstruction (past) and forecast

(future).
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Fig. 5. Comparison of normalized error plot between the algebraic
(solid line) and ANN (dashed line) models with mean wave direction
0 = 0°, and varying spreading angle, og.

C. Error assessment

To compare the algebraic and ANN models, we
quantify the prediction error between the target surface
elevation 7 and the prediction 7 using the normalized
error given by

Ngr

D (mi(xart) = 7is(xa,1)* . (10)

i=1

1
Er(X4,1) = ——
R( * ) 02N R
where o2 is the variance of the target surface elevation,
and Np is the number of realizations smoothed with a
moving average.

IV. COMPARISON OF PREDICTIONS FROM THE
ALGEBRAIC AND ANN MODELS

A. Synthetic data

The synthetic linear, short-crested wave fields are
generated with a JONSWAP spectrum with peak-
enhancement factor v = 3.3. We use a significant wave
height H, = 3 m, peak period 7, = 12 s, and water
depth d = 33 m to represent the Albany location.
The upper frequency of the energy spectrum is taken
as 3wp, where w, is the peak angular frequency. The
individual wave propagation directions (Ng = 25) from
(2) are uniformly spaced within the interval [-30g +
0,304 +0]. All predictions in this study use input time
histories of 204.5 s and 204.8 s duration (from Spotter 1,

2, and 3) as input for the ANN and algebraic models,
respectively, to predict at DWR4. It should be noted
that the sampling resolution for the ANN model is set
to 0.5 s to reduce the computation time for training
and decreasing the resolution further does not lead to
improved accuracy, whereas the sampling resolution
for the algebraic model is kept at 0.2 s, consistent with
[4].

Figure 4 shows an example of the predictions from
the algebraic and ANN models based on a random
realization with spreading angle oy = 20°, and mean
wave direction § = 0° using the array geometry in
Fig. 2. At a glance, the ANN model shows a closer
match with the target signal out to about 37, where
both predictions start to break down completely. We
now calculate the prediction error out of a large num-
ber (> 500) of realizations for different wave spreading:
op € [16,22°]. From Fig. 5, it is clear that the ANN
model is superior to the algebraic model for these
ideal simulations. Note that the error plots of the ANN
model appear less smooth than the algebraic model
due to the stochastic process of ANN model, which
can introduce variability in the prediction results.

We then investigate the model performances with
varying both the sea-state mean wave direction § and
spreading angle oy. Results are depicted by the contour
plots in Fig. 6. It can be seen that the prediction
performance of the algebraic model strongly depends
on the size of the spreading and mean wave directions.
In comparison, the ANN model is less dependent,
with wider coverage in mean wave directions and
better tolerance in spreading angles, indicating that
a better match for the predictions to the target can
be obtained. Specifically, the ANN model can achieve
accurate prediction (£(¢) < 0.1) up to 1.57, for § = 0°
with gy < 22°, while the algebraic model is constrained
to 1.27,, for 6 = 0° with oy < 20°. We note though that
both models would appear to be adequate as input to
WEC control.

While the above study demonstrates the effective-
ness of ANN model for synthetic spread waves, it
is worth noting that the ANN model is trained with
specific wave conditions (i.e., H,, T}, 09, and #) and
under the assumption that the locations of the wave
buoys would remain constant. Hence, the consistency
of wave conditions between the training and testing
sets is ensured. The following section compares the two
models from a practical point of view, using field data
with varying wave conditions and slowly moving buoy
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Fig. 6. Comparison of normalized prediction errors from the algebraic (top row) and ANN (bottom row) models with varying mean wave

directions 0, and spreading angle oy based on synthetic data.
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Fig. 7. Time-averaged prediction error over a horizon of 12 s for the first hour of every 6 hours. (a) Separation angles 6 — 64 and spreading

angle og. (b) Comparison between the algebraic and ANN models.

positions.

B. Field data

The data set consists of samples taken every 6 hours
over 88 days. Specifically, we compare the prediction
results during the first hour of each 6-hour interval.
Prior to prediction, the data are filtered using a band-
pass over the linear range of frequencies, [0.6 3.0]w,.
Fig. 7(a) shows separation angles § — 64 with error
bars that indicate the range of variation within an hour,
where 0,4 is the array pointing direction at a specific
time, and @ is the mean wave direction in the hour.
The root-mean-square (RMS) spreading angle oy (an
averaged angle away from the mean wave direction)
is plotted along the separation angles. The directional
bulk parameters (0, oy) are derived from the Fourier
coefficients [21] based on the 3-DoF records. Figure 7(b)
shows the averaged prediction error over a horizon of

12 s within an hour using a 20 s moving window for
both models. Note that there is no prediction between
August 26 and August 28 due to the loss of data from
the DWR4 during this interval. Moreover, in order to
optimize the prediction performance for the next hour,
the ANN model requires the past 6 hours of training
data. As a result, the initial 6-hour period of the ANN
model will also have no predictions.

In Fig. 7, it is evident that the prediction error
using the algebraic model strongly depends on the
separation and spreading angles, making it less reliable
for larger angles. In contrast, the predictions from
the ANN model are slightly less sensitive to these
bulk parameters. We note that the ANN model has a
better capability to predict waves with large spreading
and separation angles, which is consistent with the
synthetic results. Despite this, the ANN model exhibits
numerous error spikes seen in Fig. 7(b), even when
the algebraic model can achieve high accuracy. To
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Fig. 8. Array positions correspond to the predictions in Fig. 9. The mean wave direction is indicated by green arrows (2}, in length), and

the blue shading area represents the wave spreading.
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Fig. 9. Time series predictions corresponding to the array configurations in Fig. 8. The averaged errors are calculated over the prediction

horizon t € [0,24] s (within the vertical dashed lines).

investigate this further, we select 4 cases on different
days (marked as vertical dash-dotted lines in Fig. 7),
where there are significant discrepancies in prediction
error between the models.

The positions and bulk parameters of selected cases
are presented in Fig. 8, and their corresponding pre-
diction results are shown in Fig. 9. In cases (a) and
(d), the mean wave directions § and spreading angles
oy are relatively smaller compared to cases (b) and
(c). Additionally, the peak period T, and wavelength
Ap are larger, which indicates both cases have longer
waves, resulting in less misalignment at the prediction
location. Hence, the predictions are expected to be
more accurate for the algebraic model as demonstrated
in Fig. 9(a) and (d). In contrast, case (c) has the largest
separation angle § — 64 = 18°, RMS spreading angle

o9 = 28.9° and shorter wave period. Therefore, it is
less predictable for the algebraic model, as shown in
Fig. 9(c). In contrast, the ANN model achieves better
accuracy and a longer prediction horizon for cases
(b) and (c). These prediction results are expected and
consistent with our previous analysis of synthetic data,
as the ANN model has a wider coverage in mean wave
directions and better alignment in wave spreading than
the algebraic model. However, it is shown that the
ANN prediction result of case (a) has approximately a
2 s time difference to target waves, and the prediction is
out-of-phase for case (d), resulting in large error values.
The observed phase difference is primarily caused by
the displacement of the buoys from their long-term
averaged positions. The ANN model assumes fixed
positions of the buoys whereas the algebraic model
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takes into account the current positions of the buoys
based on their GPS coordinates.

Fig. 10(a) depicts the positions of the three Spotters
and the DWR4 corresponding to Fig. 9(a). The grey
dots indicate the positions of the Spotters and DWR4
during training, while the black dots indicate their
positions during testing, both with 1-minute intervals
between the dots. It should be noted that DWR4
recorded data every 2°¢ and 10*" minute, instead of
every 10" minute as per the manual [22], resulting
in the relatively coarse interpolation of the positions.
As shown in Fig. 10(b), the positions of DWR4 during
testing moved away from its during training. Since the
ANN model is a purely data-driven method that relies
solely on the input time histories of the motions over
the faster wave frequencies, it assumes the prediction
distance (distance from the Spotter array to the DWR4)
during testing would be similar to that during training.

As shown in Fig. 11, the error increases gradually
when the DWR4 deviates from its training positions,
and conversely, the error decreases as the DWR4 re-
turned to its training positions. This observation fur-
ther demonstrated that the error is primarily domi-
nated by the change of positions, particularly along the
mean wave direction. Similarly, the error of Fig. 9(d)
is caused by a larger moving distance, with the DWR4
moving from approximately 250 m to 350 m along the
North within training and testing positions. Hence, it is
important to incorporate the position information into
the ANN model. One possible solution to this issue
is calculating the phase difference based on the mov-
ing distance. However, obtaining accurate phase shift
correction is challenging due to the roughly estimated
prediction distance interpreted from the ANN model.
Moreover, a reduction in accuracy on troughs and
peaks can be observed after the phase correction when
the moving distance becomes significant. In contrast,
the algebraic model inputs the mean buoy positions
within the measurement time. Hence, the prediction
accuracy is much less affected by the slow-scale mo-
tion. We also note that previous work [23] on DWR4
records from this location shows that the wind has a
significant effect on the motion of the buoy within its
watch circle.

Another limitation of the ANN model is the need
for the past 6 hours of training data, periodically
updated with recent data to adapt to changing wave
conditions and buoy positions, which could delay
the initial prediction during practical applications. In
contrast, the algebraic model only requires 204.8 s of
past time histories for prediction. It is worth noting
that it is possible to train an ANN model with more
historical data (i.e., a year of data from Sandpatch) with
varying positions. However, if the new data introduces
dissimilarities, in particular, the variation in positions
that the model cannot generalize well, its performance
will be impaired considerably.

It should also be noted that a decrease in accuracy
due to the change in bulk parameters, such as H;
and 7}, is minor compared to the change in positions
because the difference in these parameters is relatively
small between the validation (past 30 min) and testing
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Fig. 10. Array positions of field data from 0:00-7:00 on July 28, with
a time interval of 1 minute between the small dots. Yellow dots
indicate the starting position of training data, red dots indicate the
starting position of testing and blue dots indicate the last position
of testing. (a) Spotters and DWR4 positions over the duration. (b)
Close-up view of the red rectangular box for DWR4.
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Fig. 11. Averaged prediction error of ANN model from 6:00-7:00 on
July 28.

data (1 hour into the future). Additionally, the model
has been generalized well based on the different sea-
state combinations in the past 6 hours.

V. CONCLUSION

This study compared a machine learning method
based on an Artificial Neural Network (ANN) model
to a physics-based algebraic model for phase-resolved
wave prediction. The models predict surface waves
at the downwave location of a Datawell Waverider-
4 (DWR4) using past information on ocean surface
elevation and z,y displacements measured by three
Spotters at upwave locations. We first analyze the
prediction performance of the models using synthetic
short-crested waves generated with average wave pa-
rameters for the Albany location under study and a
fixed array of ideal wave buoys. The results show that
the ANN model achieves better prediction accuracy
and horizon with wider coverage of mean wave di-
rection 6 and larger spreading angles oy compared to
the algebraic model.

We further compared the prediction schemes of the
models using field data measured using wave buoys
deployed in the Southern Ocean near Sandpatch, Al-
bany, Western Australia. We have demonstrated that
the ANN model achieves better prediction results
when the mean wave direction and spreading angle
are large, consistent with our observation using syn-



CHEN et al.: COMPARISON OF PHYSICS-BASED AND MACHINE LEARNING METHODS FOR PHASE-RESOLVED WAVE PREDICTION 488-9

thetic data. However, the generalization capability of
the ANN model is limited by the change in overall
buoy positions over slow times scales compared to
the waves, leading to phase offsets in the prediction.
In contrast, the algebraic model can partly account
for buoys moving distance in the positions of the
wave buoys. Notably, the error of the algebraic model
strongly depends on the mean wave directions and
spreading angles, evidenced by a strong correlation.

Overall, the results suggest that the algebraic model
is more robust for practical adaptations in sea states
with moderate spreading sizes. For larger wave sep-
aration and spreading angles, the ANN model shows
promise as an alternative method to improve predic-
tion accuracy. It is important to note, however, that
further research is needed to incorporate the positions
into the ANN model to correct the phases. A possible
approach could be to use a physics-informed neural
network that accounts for changes in buoy locations
and learns how waves propagate through space and
time based on physical principles. Such a model would
likely result in more accurate predictions and would be
worth exploring in future studies.
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