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Nonlinear hydrodynamics of a heaving sphere
in diffraction, radiation, and combined tests

Jana Orszaghova, Hugh Wolgamot, Adi Kurniawan, Daniel Ho, Bryan Tan, Guy McCauley,
and Jorgen Hals Todalshaug

Abstract—We report on an experimental campaign de-
signed to shed light on critical nonlinear hydrodynamic
effects of heaving wave energy converter (WEC) buoys
undergoing large-amplitude motions in operational con-
ditions. The experiments carried out with a spherical
model comprised radiation, diffraction and combined tests,
where the vertical motion was prescribed and delivered
via an actuator. As such, we had independent control of
incident waves and motions, enabling isolation of different
nonlinear terms by combining recordings from multiple
phase- and amplitude-manipulated runs. All tests utilised
short-duration wave groups and/or corresponding transient
motion signals.

We focus on analysis of nonlinear changes in the hy-
drodynamic forces, and free surface, in the first-harmonic
frequency range - this is of most importance to WECs.
In a series of radiation experiments, with progressively
increasing imposed motions, the radiated wave field and
the force in phase with the body velocity are found to
decrease nonlinearly, pointing to the WEC’s reduced ability
to radiate waves under larger oscillations. In the combined
tests, we are able to isolate various high-order cross-terms.
We attempt to explain the observed trends through third-
order potential flow interactions and consider a simple
method to approximately describe these.

Index Terms—wave energy, nonlinear hydrodynamic
forces, amplitude dependence, radiation damping, third-
order potential flow effects

I. INTRODUCTION

AVE-structure interactions have been studied
extensively for fixed and floating offshore and
coastal structures. Within the framework of potential
flow theory, linear and second-order calculations are
now widely used. Much emphasis has been on un-
derstanding and modelling nonlinearities arising from
large incident waves. For floating structures, how-
ever, non-linear effects can also arise from large body
motions. This is of much relevance to wave energy
converters (WECs) designed to operate in resonance
with the wavefield, and thus undergoing relatively
large oscillations even in mild and moderate sea states.
Traditional offshore structures are designed with
response natural frequencies outside the typical wave
frequencies, in order to avoid resonance. Investigations
of nonlinear effects have thus primarily focused on
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the super- and sub-harmonic frequency ranges. Super-
harmonic excitation, from second- and higher-order
sum-frequency interactions, is of relevance to fixed
structures [1], for example for the springing and ring-
ing structural responses in monopiles. Sub-harmonic
excitation, primarily from second-order difference-
frequency interactions, is important for soft-moored
floating structures, with regards to resonant slow-drift
motions of vessels, floating productions and floating
wind turbines [2] for example. Much less emphasis
has been given to the study of nonlinear effects in the
first-harmonic frequency range. This frequency region
is of foremost importance to wave energy converters,
which aim to extract maximum energy from these,
main energy-bearing, incident wave components.

In this work we experimentally investigate non-
linear hydrodynamic forces on, and the associated
wave field around, a heaving sphere in pure radiation
tests as well as in the presence of incident waves.
We utilise phase-manipulated focused wave groups, as
well as phase-manipulated imposed body motions, in
order to isolate different harmonics. We then analyse
in detail the non-linear changes in the first-harmonic
range as the motion amplitude is increased. A short
theoretical background is provided in Section II. The
experiments are described in Section III. Analysis of
the measurements and results are discussed in Section
IV. Finally, implications and conclusions are given in
Section V.

II. WEAKLY NONLINEAR POTENTIAL FLOW THEORY

Within weakly nonlinear potential flow theory
framework, the wave-wave or wave-structure inter-
action solution, for free surface or other associated
wavefield variables such as the hydrodynamic force for
example, can be described as

C(t) = A@t) fD cos(¢ + M)+ (1)
A2()(£E) 4 7 cos(26 + 03) )+
A3(t) (f(g’) cos(¢+0C7)) + B cos(3¢ + 9(3+))) +
O(A%Y),
where C(t) is the nonlinear quantity of interest, here
shown as a function of time t. In the above, for the
sake of conciseness, we have adopted a narrow-banded
notation, where A(t)cos(¢) = A(t)cos(wt + p) repre-
sents the linear content of the incident waves, with

A(t) denoting the slowly-varying envelope, w the peak
frequency and p its phase. The linear and high-order



474-2

transfer functions, described by amplitudes f("*) and
phases 0("%), are the frequency-dependent relations
between the incident waves and the n'" harmonic of the
response quantity of interest C. The equivalent expres-
sions, without the simplified narrow-banded notation,
can be found in [3] and [4] for example.

At second order, the quadratic transfer functions
describe interactions between pairs of underlying fre-
quency components. These can occur at difference
and sum frequencies, and are termed sub- and super-
harmonics owing to the fact that they respectively span
frequency ranges below and above the linear content.
These are respectively denoted by superscripts (2—)
and (24) in equation 1. Second-order responses scale
as a square of the incident waves.

At third order, the cubic transfer functions describe
interactions between triplets of components. The super-
harmonic (3+) terms arise from the so called (+ + +)
sum-frequency interactions and are centered in fre-
quency around 3w. On the other hand, the (3—) terms,
representing the so called (4 + —) interactions, overlap
with the first-harmonic range. Since they scale as a
cube of the incident wave steepness in the perturbation
expansion, their magnitudes are smaller than the linear
terms. As such the (3—) interactions have not been
studied widely as, in general, linear theory adequately
captures the dominant dynamics in this frequency
range. Moreover, a complete third-order theory for
wave-structure interactions has not been developed
(see e.g. [5] for approximations). For WECs the first-
harmonic range is of most relevance, and investigating
nonlinear hydrodynamic effects at these frequencies is
the main focus of our work.

For clarity in the remainder of the paper, we use the
term ‘first-harmonic” to denote all content in this fre-
quency range, so both the linear (1) and the third-order
(3—) terms. We reserve the term ‘linear’ for referring to
terms which scale linearly with amplitude A (and/or
the motion amplitude X, which is introduced later).

We briefly comment on the nature and origin of the
nonlinear interactions. At second order, when consid-
ering the hydrodynamic force as an example, one of the
forcing terms originates from an integral of the linear
hydrodynamic pressure calculated over the linear time-
varying portions of the instantaneous submerged hull
surface. If we consider only the linear incident and
diffracted wavefields (including the associated linear
runup on the body) but disregard the instantaneous
body position, then the second-order interaction consti-
tutes wave terms only. If we also considered the linear
radiated waves and/or the linear body position, then
we have additional wave-motion interaction terms,
as well as motion-motion terms. We note in passing
that in the full second-order theory (see e.g. [6] and
[7]) there are other second-order terms in addition
to the illustrative example discussed here. This de-
scription/classification can also be generalised to third
order, with www, wwm, wmm and mmm terms arising,
where we used w and m to denote the wave and
motion variables respectively. In experiments where
the waves and the body motions are controlled inde-
pendently, unlike in tests with freely floating bodies,
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Fig. 1.

Experimental setup. The spherical model can be seen in
the middle of the photograph, with the load cell attached above,
which is in turn rigidly connected to the vertical actuator arm. Five
wave gauges can be seen in the model’s proximity, while others were
placed further up- and down-wave of the model.

we can start to tease out the different nonlinear terms.

III. EXPERIMENTAL DETAILS

The experiments were carried out in the 50 m long
and 1.5 m wide wave flume at the Coastal and Offshore
Engineering Laboratory at the University of Western
Australia. Waves were generated by a hinged wave-
maker on one end of the flume, and absorbed passively
on a 1:10 sloping perforated beach at the other end. A
0.25 m diameter aluminium sphere was connected to
a linear actuator, which either held the sphere fixed
(diffraction tests) or oscillated the sphere vertically
according to a prescribed motion command (radiation
and combined tests). The achieved displacement was
measured with a laser distance sensor as well as via an
encoder in the actuator motor. A 3-axis 50 N load cell
measured the total forces experienced by the model.
The sphere was positioned along the flume centre-
line and approximately 10 m from the wavemaker.
An array of resistance-type wave gauges was used to
record the free surface in the vicinity of the model.
Loads and displacements were logged at 100 Hz, while
waves were recorded at 128 Hz. Two data acquisition
systems were utilised and synchronisation across all
data channels was ensured via a trigger signal common
to both systems. Three high-speed cameras were used
to capture the instantaneous runup on the sphere. Fig. 1
shows the experimental setup.

All tests utilised short-duration broad-banded wave
groups and/or corresponding transient motion signals,
to minimise issues with reflected waves from flume
ends. A focused wave group is simply a superposition
of different frequency components which are all in
phase at a single location/time. The incident wave
groups were derived from an underlying JONSWAP
spectrum, with peak frequency f, = 0.8 Hz and high-
frequency cut-off at 2.5 f,. The linear focus location was
set to be the sphere centre. Both crest- and trough-
focused wave group tests were carried out, with and
without the model in place. The undisturbed free sur-
face measurements from the sphere location were used
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to create the displacement signals for the actuated tests
- a universal phase shift and amplitude scaling was
applied to all the first-harmonic wave components. The
experimental campaign comprised over 200 tests, and
the subset of tests analysed in this paper is summarised
in Table I. Each test is characterised by the nominal
linear focus amplitude and phase of the incident waves
and the motions, with (A,p,) defining the waves,
and (X,p,,) the motions. Diffraction, radiation and
combined tests are denoted by D, R and C respectively.

Independent control of the incident waves and the
model motions allows for isolation of different linear
and higher-order terms in the measured loads and
free surface, by judiciously combining recordings from
multiple phase- and amplitude-manipulated runs. This
method was originated by [8] and can be viewed
as an extension of two- and four-phase combination
methods ( [9] and [10] for example) in wave-structure
interaction tests with a single controlled input (which
is typically the incident wavefield in experiments with
fixed or freely floating bodies). The following combi-
nations of 4 combined tests allow us to separate the
linear diffraction and the linear radiation terms, each
also additionally accompanied by various third-order
terms:

1

1 (C(o,zm) + C(0,90) — C(180,270) — C(180,9o)) = )
Afwcos(¢+ 0)+
A (s 08 + Orps) + s 0536 + 0F.1,) )+
AX2 ( 1;mm COS(2¢ - ¢ + a;mm)+

’I?n’m COS(Qw + (ZS + 92;7717”))

+ 0(A5),

1

1 (C(0,270) — C(0790) + 0(180,270) - C(180790)) = 3)
X fm cos(® + 6,,)+

XA (frray €08(20 = ¥+ 07,0, +

+0(4%),

where C(;, ) represents the measured nonlinear time
series from a combined test with the prescribed motion
given by Xcosy = X cos(wt + pn) and the linear
content of the incident waves given by Acos¢ =
A cos(wt + p,y). Note that we have omitted the explicit
time dependence of A and X, and are using these
symbols for envelopes and linear focus amplitudes
interchangeably. As above, the transfer functions are
defined by f and 6, and here we have explicitly written
out the different nonlinear terms. Equations (2) and (3)
are used to process groups of 4 combined tests (for
example C1-C4 from Table I).

In the absence of body motions, when X = 0,
equation (2) can be used to process pairs of diffraction
tests (for example D1 and D2 from Table I):

%(DO - DlSO) = Afw COS(¢ + ow)+ (4)
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AS <f1;’ll)11) COS(¢ + 9'1;11)11)) J’» ;)rww COS(3¢ J’» 0$11)11})> J’»
0(49).

Similarly, in the absence of incident waves, when A =
0, equation (3) can be used to process pairs of radiation
tests (for example R1 and R2 from Table I):

%(3270 - Rgo) = X fmcos(¢ + 0,,)+ ®)

O(X5).

Even though the equations might be lengthy, their
application is straightforward - we simply subtract
and/or add signals from pairs/quartets of synchro-
nised runs. The key point to note about our testing
campaign is that groups of tests were performed at
different excitation levels (A and X), enabling explicit
identification of amplitude scaling of the different non-
linear terms.

Lastly, in order to isolate the first-harmonic fre-
quency content from (2)—(5), a low-pass filter is applied
to remove the higher frequency terms around 3w and
beyond. The remaining components, however, contain
both the linear and the (3—) terms. We are interested
in understanding the role of the (3—) interactions and
whether they have a marked effect as body motions
and/or incident waves increase. The fact that the above
equations contain only odd-order harmonic terms is
key for clear separation as the first-harmonic and the
third-order super-harmonics overlap minimally. For
brevity, we have omitted the analogous equations for
even-order harmonics.

IV. ANALYSIS OF FIRST-HARMONIC FORCES AND FREE
SURFACE

In this section, we present results of the analysis
of the first-harmonic forces and free surface. We first
process pairs of radiation runs, and then proceed
onto combined runs. It is important to note that the
measurements from the load cell represent the total
force experienced by the sphere. In order to isolate the
hydrodynamic force content, inertia and hydrostatic
forces are removed first. These are calculated from the
sphere mass and volume, and its displacement and
acceleration recorded during each test. The remainder
hydrodynamic force constitutes a small fraction of the
total force, so accurate estimates of the mass and
geometric properties of the model are important. In
this work, we analyse the vertical force. Due to the
symmetry of the setup, there is no transverse force,
and the horizontal force in the incident wave direction
arises in the diffraction and combined tests only.

A. Radiation tests

The measured vertical hydrodynamic force, in the
first-harmonic frequency range, from the radiation runs
is shown in Fig. 2. These signals follow from (5) and the
application of a low-pass filter, as explained above. The
force recording from the X = 0.05 m radiation runs is
corrupted, so has been omitted. As expected, the force
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TABLE I
SUMMARY OF TESTS ANALYSED

X [m] 0 002 002 005 005 008 008 010 0.10
Am]  pw [°I\ pm [°] - 270 90 270 90 270 90 270 90
0 - R1 R2 R3 R4 R5 R6 R7 RS
0025 0 DI C1 C C5 C6 C9 C10
0.025 180 D2 C3 C4 C7 (C8 (Cl1 C12

increases with the imposed motion amplitude. In all
plots in this paper, apart from Fig. 8, blue, red, yellow
and purple lines consistently refer to conditions with
motion amplitudes X of 0.02, 0.05, 0.08 and 0.10 m
respectively.

N
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Fig. 2. First-harmonic hydrodynamic force from radiation runs.
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Fig. 3. Normalised first-harmonic radiation force components in
phase with body acceleration (top) and in phase with body velocity
(bottom).

We can split the radiation force into two components,
in phase with the model acceleration and with the
model velocity. Considering these are first-harmonic
force components, we can normalise the signals by
their respective imposed motion amplitude X. These
are shown in Fig. 3. Around the largest crests and
troughs in the signals, we note progressive deviations
across the three signals - a sign of nonlinearity. The

force component in phase with the body acceleration
increases, while the component in phase with the body
velocity decreases nonlinearly with the prescribed mo-
tion amplitudes. We also note that the total force is
dominated by the component in phase with the body
acceleration.

In the frequency domain, the same trend can be
seen in the force transfer functions shown in Fig. 4
- added mass increases while radiation damping de-
creases. Data from the smallest motion test aligns
with linear theory closest, while deviations become
more pronounced for the larger imposed motion tests.
The linear force coefficients are calculated by diffrac-
tion/radiation code Hydrostar [11]. We note the rather
unusual shape of the transfer functions. The sharp
peaks arise due to cross-modes in the flume. The
even modes are of relevance here, whose wavelengths
follow from A, = Wg/n, where Wy is the flume width
and n an integer. The first two even modes are shown
in the figure.
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Fig. 4. Radiated force transfer functions. Linear solution shown in
black solid line, and flume cross-mode frequencies shown by vertical
dashed lines.

In order to investigate the nature of the nonlinearities
observed, we recall that the extracted first-harmonic
forces contain linear as well as third-order (3—) mmm
terms, as per (5). These terms can be separated through
amplitude-manipulated tests as follows. Assuming that
the smallest motion-amplitude first-harmonic force sig-
nal (from tests R1 & R2 with X = 0.02 m) is linear, we
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can first scale it linearly to the other two cases (via
multiplication by § for tests R5 & R6 and via multipli-
cation by 20 for tests R7 & R8). We can subsequently
deduct it from the first-harmonic force signals (from
tests R5 & R6 and R7 & R8). The remainder should
be the (3—) mmm terms, which should scale as a cube
of the imposed motion amplitudes. This is tested in
Fig. 5, which shows the remainder signals normalised
by X3. The rather good collapse of the curves is a
compelling demonstration that the nonlinear variation
of the radiation forces in the first-harmonic frequency
range can be interpreted as third-order interactions.

474-5

normalised free surface [m/m]

t[s]

Fig. 6. Normalised first-harmonic radiated free surface. Data from
wave gauge approximately 0.05 m behind the sphere is used.
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Fig. 5. Extracted normalised (3-) mmm radiation force components
in phase with body acceleration (top) and in phase with body
velocity (bottom).

We can supplement the above results for radiation
forces with the free surface data. We first investigate
the normalised first-harmonic wave data, as shown in
Fig. 6. These plots are equivalent to Fig. 3, with the
X = 0.05 m tests also included for which the force
measurements were corrupted. The free surface can
be seen to vary nonlinearly with the imposed motion
amplitudes and exhibits a decreasing trend. We also
note the long-lived nature of the radiated wavefield,
persisting for times beyond the largest body motions.
This is a consequence of the presence of the flume
walls.

We proceed to test our hypothesis of third-order
interactions. The normalised extracted (3—) mmm free
surface terms are shown in Fig. 7. Here, we have three
curves, as we also use the free surface data from the
X = 0.05 m radiation runs, for which the force data
was not available. The collapse is reassuring.

From Figs. 3, 4 and 6, the observed decrease in both
the normalised radiated free surface and the force com-
ponent in phase with the body velocity are consistent
as per linear theory where the radiation damping force
is directly related to the propagating radiated wave-
field. A simplified interpretation of the observations
can be made in terms of the displaced volume of water

3F “n

normalised free surface (3-) [m/ms]

a4 46 48 50 52 54 56 58 60
t[s]

Fig. 7. Extracted normalised (3-) mmm radiated free surface com-
ponents.

as the sphere oscillates. For a non-cylindrical geometry,
the volume changes are nonlinear. It is perhaps not
surprising that the wave-radiating ability of the model
is progressively reduced at larger motion amplitudes.
The volume considerations are of course not the only
source of nonlinearity - we would expect deviations
from linear theory also for cylindrical bodies under-
going large oscillations. Lastly, we comment on the
variation of the radiated force proportional to body
acceleration. These added-inertia effects would modify
the heave natural frequency of the body under large
oscillations, which in a heaving WEC could lead to
detuning from resonant behaviour.

We return to the transfer function plots from Fig. 4.
We can view the experimental curves as corrections to
the linear theory, but it should be borne in mind that
these are amplitude-dependent. For this reason, one
cannot simply take the altered coefficients and apply
them in linear calculations. An account of the nonlinear
forcing has to be made. We will return to this later.

B. Combined tests

We now analyse the combined tests, processing
quartets of tests as explained in Section III. We note
that the incident wave conditions are kept the same
across all tests described here. The imposed motions
are the same as in the radiation runs, though the largest
X = 0.10 m case was omitted in order to avoid wave
runup reaching the top or the bottom of the sphere.

The extracted first-harmonic vertical hydrodynamic
force remainder (once inertia and hydrostatic forces
have been removed) is shown in Fig. 8. The com-
bined tests are processed according to (2) and (3).
We have also superimposed the corresponding force
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Fig. 8. First-harmonic hydrodynamic force from combined, radiation
and diffraction runs. Top and bottom plots are for motion amplitudes
of X =0.02m and X = 0.08 m cases respectively.

signals from the diffraction and the radiation runs,
which follow from (4) and (5) respectively. Note that in
this figure, the colour scheme is not consistent with the
rest of the paper - the legend provides the information
on the data. The top plot is for the smallest motion
amplitude case with X = 0.02 m, while the bottom is
for the X = 0.08 m condition. The signals containing
the linear diffraction force (denoted by (1) w) from
the combined and the diffraction runs are in good
agreement in the smallest motion case, suggesting that
the (3—) wmm cross-terms are negligible. In the larger
motion case, however, the force in the combined test
is considerably lower (while the diffraction test data
is the same in both plots). In the extracted force sig-
nals containing the linear radiation force (denoted by
(1) m), we note differences in the combined and the
pure radiation runs at both motion amplitudes.

Subtracting the processed radiation-run first-
harmonic force signals from the analogous combined-
run signals, allows us to isolate the (3—) wwm terms.
These are displayed in the top plot in Fig. 9. We
can then test whether these differences scale linearly
with motion and quadratically with incident waves.
We note, however, that the wave conditions are not
varied here, so that dependence is not relevant. The
normalised curves are displayed in the bottom plot in
Fig. 9, where a reasonable collapse can be seen. In the
absence of the force measurements in the radiation
tests with X = 0.05 m, only two curves are available.
We also note that the (3—) wwm force in the smallest
amplitude case is really rather small (< 0.5 N), and
thus subject to high noise-to-signal ratio, especially
considering that this time series is obtained from six
independent tests.

We can analyse the free surface measurements in an
analogous way. The extracted (3—) wwm wave signals
are displayed in Fig. 10, where a reasonable agreement
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Fig. 9. Extracted third-order (3—) wwm force. Top and bottom plots
show the raw and the normalised data respectively.

in the normalised curves can be seen. We are faced
with a similar difficulty with respect to the magnitude
of the (3—) signals, as these are only O(1) mm, so
close to the wave gauge sensing precision. Despite this,
the observed nonlinear trends in the first-harmonic
force and free surface derived from the combined
experiments, suggest third-order interaction terms as
a plausible mechanism.
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Fig. 10. Extracted third-order (3—) wwm free surface. Top and
bottom plots show the raw and the normalised data respectively.

We have noted above that one cannot account for
the nonlinear changes of the first-harmonic quantities
by simply adopting appropriately modified frequency-
domain coefficients. In the absence of a full third-order
theory, approximations are sought. Chen et al. [9] pro-
pose a simplified description of nonlinear diffraction
forces on fixed vertical cylinders, whereby the higher-

62
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order forces are calculated from powers of the linear
signals and its Hilbert transform. Following [12], we
note that the (3—) components could thus be approxi-
mated via

A3f(3—) COS(¢ + 9(3_)) ~ (gj% + x%H)(Oé.fL'L + B-CULH)’
(6)

where z, denotes the linear signal and x5 its Hilbert
transform. The first term on the right-hand side rep-
resents a square of the envelope of the linear signal,
while the second term is a scaled and potentially phase-
shifted variant of the linear quantity. It is clear how
the right-hand side represents a first-harmonic quantity
which is rather localised in time (compared to the
linear signal) due to the envelope squared multiplier.
Without dwelling too much on the details of the under-
lying theory related to (6), we note that its application
is straightforward as it simply entails calculations of
simple powers of linear signals.

For the (3—) mmm terms, the appropriate linear
signals could be the (linear) body motion, which here is
imposed and given by X cos1) = X cos(wt+py,). Alter-
natively, one could use the linear radiated free surface
or the linear radiation force, both given by X f,,, cos(¢)+
0,,), where the (fp,,0,,) are the displacement-to-wave
and displacement-to-force transfer functions respec-
tively. Fig. 11 shows the approximations as per (6)
for the radiated force components in phase with the
body acceleration and velocity, where the displace-
ment has been used for the linear signals z; and
the coefficients o and 8 follow from a simple least-
square fit. The agreement is by no means perfect, but
the simplicity of the proposed approach lends itself
to further investigation. In time-domain models of
WEC dynamics such additional (3-) forcing terms could
be easily incorporated, as they rely only on known
linear quantities. Thanks to the novel experiments
with controlled motions and the signal processing of
the measurements, one can isolate all the different
(3-) terms and attempt to account for their effects
in numerical models. This remains as further work,
together with thorough validation of our hypothesis
that the observed nonlinearities are indeed third-order
potential flow effects.

V. CONCLUSIONS

This paper introduces a large experimental campaign
of a heaving spherical buoy comprised of radiation,
diffraction and combined tests, designed for a detailed
investigation of nonlinear hydrodynamic effects. To
this end, the body motions in the experiments are fully
controlled, allowing for independent variation of the
incident wave conditions and the imposed motions.
Judicious combinations of recordings from the different
phase- and amplitude-manipulated tests, enable isola-
tion of different linear and high-order responses.

We focus our analysis on the first-harmonic fre-
quency range, which is of most relevance to wave
energy converters. By examining multiple radiation
runs with progressively increasing driving motion am-
plitudes, we observe nonlinear changes to the added
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Fig. 11. Extracted normalised (3—) mmm radiation force compo-
nents in phase with body acceleration (top) and in phase with body
velocity (bottom). The green curves are approximation as per 6.

mass and radiation damping force coefficients, as well
as the radiated free surface. For the spherical body
investigated here, as the motion oscillations increase,
its wave-generating ability is found to reduce while
the hydrodynamic force components in phase with the
body acceleration are seen to increase. These nonlinear
effects would directly influence the WEC operation.
We also analyse the same actuated tests with incident
waves present, and describe a methodology for iso-
lating various nonlinear cross-terms. Thanks to tests
performed at different excitation amplitudes, for both
waves and motion, we can explicitly identify the de-
pendence of the various nonlinear terms on the input
amplitudes. The findings prompt us to explain the
observed nonlinearities as third-order (++ —) potential
flow effects.
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