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A time domain approach for the optimal
control of wave energy converter arrays

Mohamed A. Shabara, and Ossama Abdelkhalik

Abstract—Wave energy converters typically use various
control methods to extract energy from ocean waves. The
objective of the control system is to optimize the energy
extraction process, taking into account the dynamics of the
system and the wave conditions. The task of deriving the
optimal control laws of wave energy converter arrays for
regular and irregular waves using the Pontryagin minimum
principle was previously investigated in the literature. The
result is a combination of the singular arc and bang-
bang control laws. For irregular waves, some complexity
arises due to the radiation state-space representation, which
requires ignoring the hydrodynamic coupling terms related
to the added mass and radiation-damping coefficients; this
reduces the computational complexity of the control force
but adversely affects the solution’s accuracy. Also, the
derived control laws are specific to a particular wave condi-
tion. Recently, the optimal control of a flexible buoy wave
energy converter was derived using the convolution repre-
sentation for the radiation force. In this work, the optimal
control laws of flexible buoy wave energy converters are
modified to simulate wave energy converter arrays; then,
the results are compared to those obtained by dropping the
hydrodynamic radiation coupling terms. Although using a
convolution representation adds computational complexity
to the optimal control problem, it generates an equation
that is generic to any wave condition, can be used with
any wave spectrum, and provides an expression for the
switching condition.

Index Terms—Optimal Control - Singular Arcs - Wave
Energy Converters - WEC Arrays

I. INTRODUCTION

THE earliest known report of wave energy convert-
ers dates back to the late 18th century. In 1799,

a French physicist named Girard and his son built
a device called the ”Machine of Girard” to harness
wave power [1]. The machine consisted of a series of
floating rafts connected by hinges and gears. As the
waves moved the rafts, the motion was transmitted to a
pump, which was used to lift water from a lower level
to a higher level. Although the Machine of Girard was
not a commercial success, it was an early attempt to
capture wave energy and convert it into useful work.
Since then, numerous designs and concepts for wave
energy converters have been proposed and developed
[2]–[5]. It’s worth noting that while the Machine of
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Girard is considered one of the earliest documented
wave energy converters, there may have been ear-
lier, undocumented attempts or ideas related to wave
power harnessing that are not widely known.

When a certain WEC is tested and considered for
mass production and industrialization, it is usually
applied in arrays to reduce maintenance and opera-
tional costs [6]. One of the earliest theoretical studies on
WEC arrays was done in 1977 by Budal [7], where he
presented a theory for maximizing power absorption
by oscillating point absorber arrays in linear waves. It
demonstrates that when the bodies are arranged in a
linear row with a spacing of one wavelength or less of
the incident wave, the power absorption per body can
increase significantly, allowing the system to absorb
100% of the wave power incident on its entire length.

One of the earliest optimal control methods of WEC
is the Complex Conjugate Control; this method utilizes
the concept of the complex conjugate of the incident
wave to optimize power absorption (to maximize ab-
sorbed energy). This is done by setting the control re-
actance Xopt to a value that cancels out the reactance of
the mechanical system [8]. The PTO system’s reactance
affects its ability to extract energy from ocean waves
and return power to the water. When the reactance
is non-zero, the PTO can achieve bidirectional power
behavior, which requires costlier components, leading
to increased running and initial costs [9].

The complex conjugate control is considered a spec-
tral method that provides a theoretical optimal reso-
nance condition, resulting in unrealistic large ampli-
tudes and unrealistically large two-way energy trans-
fers between the buoy and PTO [10]. Moreover, this
method does not allow for physical constraint han-
dling as well as nonlinear control forces. The litera-
ture review in this section will focus on the analytical
time-domain optimal control methods used to derive the
optimal control laws of WECs that involve singular arc
control laws.

The time domain equation of motion of a single
degree of freedom (DoF) point absorber (PA) in regular
waves is given by Cummins Equation [11]:

(m+m∞)ẍ(t) + cẋ(t) + kx(t) = fext(t) + u(t) (1)

where m ∈ R+ is the buoy mass, m∞, c, k ∈ R+ are the
hydrodynamic added mass, hydrodynamic radiation
damping, and the hydrostatic stuffiness coefficients,
x is a map, ẍ, ẋ, x ∈ R are the center of gravity
(C.G) acceleration, velocity and displacement, fext is
the hydrodynamic excitation force and u is the control
force.
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Refs. [10], [12], [13] solved the optimal control prob-
lem in the time domain as a constrained problem
(using the Pontryagin Minimum Principle); the control
force took the form u = −Bu2(t)x

2
2(t) + u1(t)G, where

u1(t) ∈ [−1, 1], u2(t) ∈ [0, 1], B is a constant damping
coefficient, and G is a positive large constant. With this
linear force representation, the derived Hamiltonian is
linear in the control force u, and hence the optimal
solution, in general, is expected to have singular arcs
[9], [14].

Refs. [10], [13] proposed that the optimal control
of multi-DoF point absorber has a pure bang-bang
behavior (this can be extended to WEC arrays); the
bang-bang control is a control strategy characterized
by a discontinuous control signal where the control
force is constrained to two fixed values, transitioning
abruptly between them (known as an on-off controller).
The derived control law in [10], [13] exhibits the ab-
sence of singular arcs, meaning there are no ambiguous
control points in the solution. However, this property is
attributed to the assumption of a specific form for the
control force in the analysis, leading to a search domain
limited to a subset of the overall solution domain
[11]. Ref. [9], [11] derived the control that accounts
for a search domain that is not limited to a subset
of the overall solution domain, resulting in a bang-
singular-bang behavior, a similar approach is done in
the current work.

Ref. [11] used the Pontryagin Minimum Principle
(PMP) approach to derive the optimal laws for a single
DoF point absorber in both regular and irregular waves
for the regular waves. The resulting singular control
law for regular waves is expressed as

usa = fext(t)− cx2(t)− kx1(t)−
m

2c

∂fext

∂t
(2)

and the switching condition is

σ = x2(t)−
1

2c
fext(t) (3)

where σ is the switching surface, and the final optimal
control law is

u =


usa if σ = 0

γ if σ > 0

−γ if σ < 0

(4)

where γ is the control force saturation limit. It is worth
noting that if there is no saturation limit on the control
force, the control law becomes x2(t) =

1
2cfext(t), which

is the same result obtained from the complex conjugate
control.

For irregular waves, Ref. [11] used the radiation
states representation for the radiation damping such
that (1) is modified to be [15]:

(m+m∞)ẍ(t) +Crxr(t) + kx(t) = fext + u (5)
ẋr(t) = Arxr(t) +Brx2(t) (6)

where xr ∈ Rnr×1 is the radiation states vector, Ar ∈
Rnr×nr , Br ∈ Rnr×1, and Cr ∈ R1×nr are constant
radiation matrices, the process of calculating these
matrices are detailed in many references including
Ref. [16]. To solve the optimal control problem for

irregular waves using (5) and (6), [11] used the Laplace
transformation approach, cumbersome when applying
the Laplace inverse, to mitigate this complexity, [11]
used the representative wave frequency (ωs) and the
significant wave height to obtain the control law. For
their specific device and wave conditions (ωs = 2

3π),
the control law is:

u(t) = 4688 sin(
2

3
πt) + 897 cos(

2

3
πt) (7)

Although this method is simple to apply to any de-
vice, it has the disadvantage that the resulting equation
is applicable for specific wave conditions. When the
wave condition changes, new calculations are required
to obtain new control laws. Additionally, calculating
the Laplace inverse becomes a cumbersome task for
devices with multiple DoF or WEC arrays. The hydro-
dynamic added mass and radiation coefficient matrices
are dense, resulting in coupled equations of motion,
and ignoring these coupling terms is required to obtain
the control law analytically as demonstrated in Ref.
[17]. Also, this method does not provide an analytical
expression for the switching condition.

Like the complex conjugate control, the bang-
singular-bang requires a bidirectional power flow, ref.
[17]–[19] proposed an analytical method to apply a
constraint on the maximum allowable reactive power
available in the control system. The proposed method
adds a constraint u(t) ◦ x2(t) ≤ −ϵ where ϵ is the
available reactive power and “◦” is the Hadamard
product; in the same work, the authors also proposed
accounting for the saturation limit “γ” in the optimal
control problem formulation as |u(t)| ≤ γ.

These inequality constraints are then converted to an
equality constraint using slackness variables α and β
as follows:

−u(t)x2(t) + ϵ = α (8)
−u(t) + α = γ (9)

The slackness variable for each equality constraint is
determined by evaluating the corresponding Lagrange
multiplier. If the equality constraint is satisfied, the
slackness variable will be zero. If the constraint is
violated, the slackness variable will be positive. Note
that this power constraint method will not be applied
in the current work as it is beyond the scope of this
paper’s objective.

Ref. [20] used the control laws derived in [17] to
identify the optimal heterogeneous WEC array while
controlled optimally, heterogeneous here means that
the buoys are not identical; where cylindrical buoys
are used, and the optimizer finds the optimal radius
and drought for each device in the array. Different
optimal layouts were identified for 3, 5, 9, and 13 buoy
arrays. The optimal control formulation described in
this paper will be tested on the same optimal array
layout for three devices used in [20] as described in
section IV.

As mentioned earlier, ref. [17] ignored the hydrody-
namic coupling terms to facilitate the Laplace inverse
step in the derivation and to reduce the computational
cost required by the GA optimizer to find the optimal



SHABARA AND ABDELKHALIK: A TIME DOMAIN APPROACH FOR THE OPTIMAL CONTROL OF WEC ARRAYS 472–3

layout. Ref. [9] mitigated this problem by using the
convolution formulation for the hydrodynamic radia-
tion forces, although the convolution computation is
computationally expensive compared to the radiation
state-space approximation described in (5) and (6), it
provides more accurate results.

The dynamic modeling and optimal control of a
point absorber with multiple degrees of freedom are
similar to that of an array of point absorbers; the
optimal control laws derived should coordinate be-
tween the degrees of freedom or the array members
to maximize the total energy harvested by the system.

To highlight this similarity, ref. [15] derived the
dynamic model for variable-shape buoy (VSB) WECs
in regular and irregular waves. For irregular waves,
the equation of motion is:

(M +M∞(t)) ẍ+Dẋ+ (K +Kh(t))x = Qext(t)

+Qrad(t)−Qpto(t) (10)

where x ∈ Rnd×1, nd is the number of generalized
coordinates (or DoF). M , M∞(t) ∈ Rnd×nd are the
generalized mass, and the generalized hydrodynamic
added mass matrices associated with the DoF, D ∈
Rnd×nd is the generalized damping matrix associated
with the material properties, K,Kh(t) ∈ Rnd×nd are
the generalized material stiffness and the generalized
hydrostatic stiffness matrices, finally, Qext,Qrad,Qpto ∈
Rnd×1 are the generalized excitation, radiation damp-
ing, and control forces, respectively.

It is worth noting that (10) is linear time-variant
(LTV) because the VSB WEC buoy changes its shape
actively depending on the incident wave.

For fixed-shape buoy (FSB) WEC arrays, the system
becomes linear time-invariant (LTI), and the general-
ized damping and stiffness matrices associated with
the material properties vanish, thus (10) is reduced to:

(M +M∞) ẍ+Khx = Qext(t) +Qrad(t)−Qpto (11)

where nd, in this case, becomes the number of devices
in the array. This is similar to the equation derived in
[21].

The generalized hydrodynamic radiation force is
expressed as

Qrad(t,x2) = −
∫ t

0

(Kr(t− τ)x2(τ)) dτ (12)

where Kr ∈ Rnd×nd is the retardation function describ-
ing the hydrodynamic radiation memory effects such
that:

Kr(t) =
2

π

∫ ωmax

ωmin

Drad(t, ω) cos (ωt) dω (13)

where Drad ∈ Rnd×nd×nω is the hydrodynamic radia-
tion damping matrix for the WEC array, and nω is the
number of wave frequencies superimposed to form the
irregular wave.

The hydrodynamic excitation force is expressed as
[15]:

Qext(t) =

nω∑
j=1

ℜ
(
Exj ηj e

î(ωjt+ϕj)
)

(14)

where Ex ∈ Cnd×nw is the hydrodynamic excitation
force coefficient obtained from the boundary element
method solvers (ex.: NEMOH), η is the wave elevation,
and ϕ is the random phase shift.

This paper represents the first work to derive the
optimal control law for WECs arrays using the PMP
approach using the convolution representation of the
radiation forces; the rest of this paper is described
as follows, section II gives an overview on the PMP
approach and details the optimal control problem for-
mulation of WEC arrays, then section III derives the
optimal control laws WEC arrays. The derived control
laws are then implemented in section IV on a linear
row three devices WEC array, where the effect of
accounting for the hydrodynamic coefficients coupling
terms is highlighted, finally, section V serves as a
conclusion, summarizing the main points discussed in
this paper and outlining potential avenues for future
research.

II. PROBLEM STATMENT

Pontryagin minimum principle (PMP) is used to find
the system’s optimal control law. PMP screens the
potential solutions at each time step and identifies the
candidate that minimizes the Hamiltonian. The Hamil-
tonian is a mathematical expression that represents the
total energy of a system, including both kinetic and
potential energy.

There are cases where the PMP may be unable to
provide sufficient information about the control law.
This can happen when there are infinite possible con-
trol candidates, or the stationary condition is not an
explicit function of the control force. The stationary
condition refers to a state where the system is not
changing over time. If the stationary condition is not
an explicit function of the control force, it may not
provide useful information about the control law, and
additional necessary conditions are required.

The objective of the WEC array optimal control
problem J is to maximize the total harvested energy
by the WEC arrays over time t ∈ [0, tf ] such that

J = −
∫ tf

0

QT
ptox2 (15)

where Qpto = [u1 u2 ... und
]T accounts for the PTO

force on the devices C.G. (ui ∈ R1,∀i = 1, ...nd).
It is worth noting that the controller could maximize

the total array harvested energy by turning and detun-
ing the devices independently in the array depending
on the incident waves and the interactions between the
devices.

The optimal control problem for irregular waves is
formulated based on (11) and (15) as:

min
x2,Qpto

J = −
∫ tf

t0

QT
ptox2dt

s.t. ẋ1 = x2, t ∈ [t0, tf ],

ẋ2 = M̃
−1
(
−Khx1 +Qhydro(x2, x3)−Qpto

)
,

ẋ3 = 1,x10 = x1(t0),x20 = x2(t0)
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where Qhydro(x2, x3) = Qext(x3)+Qrad(x2, x3) ∈ Rnd×1,
and M̃ = M +M∞. Noting that the system described
in (11) is non-autonomous, the optimal control formu-
lation is formulated based on an autonomous system.
Hence, the time t is considered as a state x3 ∈ R.

The control force saturation limit is [9]:

Qpto ∈ U =∆ {Qpto : Qmin
pto ≤ Qpto ≤ Qmax

pto }∀t ∈ [t0, tf ]

(16)

where Qmax
pto , and Qmin

pto are the maximum and minimum
saturation limits of the PTO control forces.

III. OPTIMAL CONTROL

This section derives the optimal control laws for
WEC arrays in irregular waves. The derivation proce-
dure follows the same steps as in [9]. First, the Hamil-
tonian H is constructed, then the necessary conditions
for optimally are derived, which includes the adjoint
equations λ̇ = −∂H/∂x, where λ is the Lagrange
multipliers’ vector, and the stationary condition Hu =
−∂H/∂QT

pto [13].
The Hamiltonian is constructed as

H
(
x,λ,Qpto

)
= −QT

ptox2 + λT
1 x2 + λT

2 M̃
−1×(

−Khx1 +Qext +Qrad −Qpto

)
+ λ3 (17)

The Hamiltonian constructed in (17) is linear in control
force Qpto, and a singular arc control law will be
obtained. The adjoint equations are:

λ̇1 =
(
M̃

−1
Kh

)T
λ2 (18)

λ̇2 = Qpto − λ1 −
(
M̃

−1 ∂QT
rad

∂x2

)T
λ2 (19)

λ̇3 = −
(
M̃

−1
( ∂

∂x3

(
Qext +Qrad

))T

λ2 (20)

Accordingly, the stationary condition is expressed as:

Hu = −x2 − M̃
−T

λ2 = 0 ⇐⇒ λ2 = −M̃
T
x2 (21)

The stationary condition is not a function of the PTO
control force “Qpto” and the high order maximum
principle (HMP) are summoned to derive the addi-
tional necessary conditions to get the control laws [13].
These additional necessary conditions are derived by
differentiating (17) with respect to the time state (x3)
an even number of times until a control law is obtained
in the form

d2k

dt2k
Hu

(
x,Qpto,λ

)
= G0 +G1Qpto(t) = 0 (22)

where k ∈ Z+ is the order of singularity, i.e., the control
law takes the form

Qpto = −G0/G1 (23)

where G1 ̸= 0 ∀t ∈ [t1, t2].
The first additional necessary condition is obtained

by differentiating (21) to get:

Ḣu = −ẋ2 − M̃
−T

λ̇2 = 0 ⇐⇒ λ̇2 = −M̃
T
ẋ2 (24)

Substituting (18) into (24) then integrating yields:

λ1 = −Kh
Tx1 −C (25)

where C ∈ Rnd×1 is an integration constant.
Substitute (25), the 2nd constraint, and (19) in (24)

we get:

Ḣu = C2Qpto +C1x1 − M̃
−1(

Qext +Qrad
)

−
(
M̃

−T ∂Qrad

∂x2

)
x2 −C = 0 (26)

Where C̄2 =
(
M̃

−1 − M̃
−T )

, and C̄1 =

(M̃
−1

Kh+
(
KhM̃

−1
)T ), C̄2 is skew-symmetric, i.e.,

it is a coupling matrix for the generalized control
force elements; these coupling effects are ignored when
solving the problem in the s-domain.

Differentiating (26) to get an additional necessary
condition yields:

Ḧu = C2

∂Qpto

∂x3
− M̃

−T ∂Qrad

∂x2
ẋ2 +C1x2−

M̃
−1 ∂

∂x3

(
Qext +Qrad

)
−
(
M̃

−T ∂Qrad

∂x3∂x2

)
x2 = 0 (27)

Rearranging (27) yields:

ẋ2 = −
(
M̃

−T ∂Qrad

∂x2

)−1[
M̃

−1 ∂

∂x3

(
Qext +Qrad

)
−C2

∂Qpto

∂x3
+
((

M̃
−T ∂2Qrad

∂x2∂x3

)
−C1

)
x2

]
(28)

Substituting the 2nd constraint into (28) and rearrang-
ing yields the required singular arc control law:

Qsa
pto = Qext +Qrad −Khx1 + M̃

(
M̃

−T ∂Qrad

∂x2

)−1

[
M̃

−1 ∂

∂x3

(
Qext +Qrad

)
−C2

∂Qpto

∂x3

+
((

M̃
−T ∂2Qrad

∂x2∂x3

)
−C1

)
x2

]
(29)

This equation can be compared to the singular arc gen-
eralized PTO force derived in [9]. From the necessary
condition in (24) one can write:

x2 =
(
M̃

−T ∂Qrad

∂x2

)−1(
C1x1 − M̃

−1(
Qext +Qrad

)
+C2Qpto −C

)
(30)

By integrating (30) one can get:

x1 =

∫ t

t0

((
M̃

−T ∂Qrad

∂x2

)−1(
C1x1 +C2Qpto

− M̃
−1
(
Qext +Qrad

)
−C

))
dσ + x1(t0) (31)

t0 is arbitrary, one can show that the constant C = 0
by setting t = t0.
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Noting that, from (12), and the differentiation under
the integral sign rules, one can write:

∂Qrad

∂x3
= −Kr(0)x2(t)−

∫ t

0

(
K̇r(t− τ)x2(τ)

)
dτ

(32)
∂Qrad

∂x2
= −

∫ t

0

(
Kr

T (t− τ)
)
dτ (33)

∂2Qrad

∂x3∂x2
= −KT (0)−

∫ t

0

(
K̇r

T
(t− τ)

)
dτ (34)

The derivation done in this section is proof of the
following proposition:

Proposition 1. For a WEC array, the control law that
maintains

Hu (x,λ) = 0, ∀t ∈ [t1, t2] ⊆ [t0, tf ] (35)

for the optimal control problem defined in section II, if the
PTO saturation limit is large enough, the problem becomes
a singular arc optimal control problem. Thus, the optimal
control law consists of both subarcs of singular control and
non-singular (bang) control, and it is determined by the sign
of the switching curves defined by the components of “C”;
the junctions between the control laws are discontinuous. We
say a singular arc occurs if any of the switching functions
Ḣui∀i = 1, ..., nd vanishes; Ḣui is defined as the switching
surface that corresponds to Q

pto
i , and it is obtained from

the necessary condition Ḣui
. The optimal control law that

satisfies the two additional necessary conditions Ḣu, Ḧu

and Legendre-Clebsch Condition := (−1)k d
du

(
d2k

dx2k
3

)
Hu ≥

0 ∀t ∈ [t1 t2] is expressed as Qpto =


Qsa

pto if C = 0

Qmax
pto if C > 0

Qmin
pto if C < 0

.

The optimal PTO force Qpto components switch between
the boundaries at the zero crossings of the corresponding
function.

This proposition can be compared to the definition
in [9].

IV. RESULTS AND DISCUSSION

This paper derives the optimal control law of WEC
arrays; the derivation in this paper is an extension
to work done in [9], which addresses the optimal
control law of single WECs with multiple degrees of
freedom (specifically, the variable-shape wave energy
converters). Ref. [20] used a genetic algorithm (GA)
to find the optimal device dimensions in cylindrical
WEC homogeneous arrays, and its results for three
cylindrical devices are utilized in the paper. The WEC
array layout and device dimensions used in this paper
are listed in Table IV and Fig.1.

Also, the control force limit were set to be Qmax
pto =

−Qmin
pto = [105 105 105]T .

The Bretschneider wave spectrum is used in this
paper [15] with a total number of waves of nω = 256.
The wave conditions used are listed in Table IV, also,
fig. 2 shows the Qhydro which is the summation of the
excitation and radiation damping forces acting on the
three devices.

TABLE I
THE HOMOGENEOUS ARRAY LAYOUT, DIMENSIONS, AND

WAVE CONDITIONS

Symbol Quantity Unit

nd Number of devices 3
r Radius 7.22 m
d Drought 5.81 m

Device 1 position (0,0,0) m
Device 2 position (0,40.2554,0) m
Device 3 position (0,-40.2554,0) m

Hs Significant wave height 0.8222 m
Tp Particular wave period 6.00 sec
nω Number of frequencies 256 sec
ωmin Minimum frequency 0.1 rad/sec
ωmax Maximum frequency 3.5 rad/sec

Fig. 1. Optimized size for an array of 3 devices

Fig. 2. The external hydrodynamic force Qhydro = Qext +Qrad

To highlight the significance of the contribution of
this work, two cases were tested; the first accounts
for the radiation coupling terms (for the added mass
and the radiation damping coefficients), and the second
drops these coupling terms. Since the three devices are
facing the incident in a parallel sense (Fig. 1), for both
cases, buoys two and three should harvest the same
energy due to the array layout symmetry about device
1.

Figures 3 and 4 show the heave displacements and
velocities of the three devices; it can be seen that the re-
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Fig. 3. Heave displacement response

Fig. 4. Heave velocity response

sponse of devices 2 and 3 are identical due to the array
layout symmetry about device 1, and device one’s pk-
pk displacement is higher than the other two devices;
this suggests that the controller takes advantage of the
radiated waves from both devices 3 and 2 to increase
the harvested energy from device 1. It can be seen that
due to the QPTO saturation limit, the displacement of
device one is bounded by ±0.76 m.

The control force QPTO for the three devices are
shown in Fig. 5, the effect of the saturation limit (105N )
can be seen in the waveform, which causes a square
waveform to be obtained. It is worth noting that the
results show that the solution is a bang-singular-bang
law. The more the saturation limit is relaxed, the more
time the control spends in the singular phase.

The energy harvested by the three devices while
accounting for the coupling terms of the hydrodynamic
radiation forces is shown in Fig. 6; on the other hand,
Fig. 7 shows the harvested without accounting for the
coupling terms. In both cases, the device in the middle
(device 1) harvests more energy most of the simulation
time; also, it can be seen that ignoring the coupling
terms results in a similar behavior of all three devices
in the array, which device one harvesting slightly more
energy compared to the other two devices.

Fig. 5. PTO Control force QPTO showing the bang-singular-bang
control law performance.

Fig. 6. Energy harvested while accounting for the coupling terms

Fig. 7. Energy harvested: No coupling terms

Fig. 8 shows that ignoring the coupling terms leads
to an overestimation in the harvested energy in the first
155 seconds; then, from 155 seconds to 340 seconds,
it started underestimating the total energy harvested,
then the opposite behavior happened from 340 seconds
until the end of the simulation. Noting that the phase
shift in the excitation force Eq. (14) is random, and
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Fig. 8. Total energy harvested by the array:
Case 1: With the hydrodynamic radiation coupling terms.
Case 2: Without the hydrodynamic radiation coupling terms

different behavior can be obtained if different phase
shift values are used.

The tested array in the current work consists of
only three identical WECs, which are relatively large
distances apart; it is expected that when increasing
the number of WECs in the array and/or decreas-
ing the distances between the devices, the overesti-
mation/underestimation behavior would increase; i.e.,
in a layout optimization task, the radiation coupling
terms can be pivotal.

V. CONCLUSION AND FUTURE WORK

The optimal control laws for wave energy converter
arrays were derived using Pontryagin’s minimum prin-
ciple; unlike the optimal control laws developed in
the literature, this work accounts for the coupling
terms associated with the radiation forces coefficients.
The similarity between the optimal control derivation
for WEC arrays and WECs with multiple degrees of
freedom is highlighted in this work. Results show
that, depending on the simulation time, ignoring the
radiation coupling terms in an optimal WEC array
arrangement overestimates/underestimates the gener-
ated power; this overestimation/underestimation can
become significant when increasing the number of de-
vices in the array or decreasing the distances between
the devices. Finally, destructive interference is caused
by the radiated waves between the devices. This sug-
gests that the optimal layout found by algorithms
that ignore the coupling terms might not be accurate
because the optimizer should design layouts that cre-
ate constructive interference. For future work, optimal
control of variable-shape wave energy converter arrays
will be studied.
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