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Wave Excitation Force Estimation for a
Multi-DoF WEC via a Cubature Kalman Filter:

Improved Design and Results
Jiamin Zhu, Alexis Mérigaud, and Paolino Tona

Abstract—In this study, we propose a nonlinear multi-
degree-of-freedom wave excitation force estimator for a
CETO-like device, a submerged wave energy converter
powered by three power take-off systems. Our approach
combines the square-root cubature Kalman filter (SCKF),
with a heuristic covariance adaptation method. This
method is developed based on a numerical sensitivity
analysis and is shown to be easily implementable and
extendable. Only 3 hyper-parameters need to be tuned
offline for a single sea state, and the resulting tuning
achieves quite good estimation performance across a wide
range of sea states.

Index Terms—Wave energy converters, wave excitation
force estimation, Kalman filters, error covariance matrix
adaptation heuristic.

I. INTRODUCTION

MANY advanced control methods for power max-
imisation of wave energy converters (WECs)

require online estimation of wave excitation forces.
While most published studies address the estimation
problem for WECs with one degree of freedom (DoF),
the existing literature is relatively scarce for multi-DoF
devices. Reference [1], which explores wave excitation
force estimation and prediction for a spar-buoy WEC,
is likely the earliest published study addressing the 3-
DoF context. It introduces an extended Kalman filter
approach that treats the wave excitation force as a
combination of time-varying sinusoids. On average,
simulation results demonstrate accurate estimation in
the heave direction, but less satisfactory performance
in the surge and pitch directions, with a significant
deterioration for some of the considered sea states. In
[2], a multi-DOF extension of the “simple-but-effective”
controller is developed for a WaveSub-like device, a 4-
PTO submerged WEC, while in [3] a model predictive
control (MPC) approach is introduced for the same
device. While the estimation results presented in [2]
for the surge and heave directions appear perfect, no
details regarding the dynamic observer are provided.
Conversely, in [3], the authors mention utilizing a 3-
DoF extension of the Kalman Filter approach proposed
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in [4]. In the latter study, the plots indicate appre-
ciable discrepancy between the estimated wave and
the “true” excitation force in the surge and heave
directions. However, no results are provided for the
pitch direction, nor for off-axis loading scenarios that
would induce excitation in other directions.

Undoubtedly, the design of a multi-DoF excitation
force estimator presents various challenges. Indeed,
the high dimension of the underlying dynamic sys-
tem poses difficulties in both online implementation
and estimator parameter-tuning. In addition, multi-
DoF systems are associated with specific non-linear ef-
fects, stemming from the kinematic terms. Those effects
may lead to a substantial performance deterioration, if
the estimator relies on a linearized model to reduce
computation time. Therefore, an efficient nonlinear es-
timator is desirable.

Among the various Kalman-like nonlinear filters,
the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) have emerged as the most com-
monly utilized approaches for estimator design. In
both EKF and UKF, the state distribution is approx-
imated by a Gaussian random variable. While in
the EKF this distribution is propagated analytically
through the (first-order) linearization of the nonlinear
system, in the UKF, this distribution is approximated
using a set of carefully chosen sample points (called
sigma points) and is propagated through the true
nonlinear system [5]. In [6], it has been pointed out that
the simpler form of the UKF obtained by setting the
nonzero scaling parameter (defining the nonzero center
sigma point), corresponds to the Cubature Kalman
Filter (CKF), which is derived directly from the cu-
bature integration rules. The advantage of the CKF is
that it does not have any free parameter to be tuned,
if the process and the observation error covariances
are known. The CKF appears to be numerically accu-
rate and can be easily extended to high-dimensional
problems. However, several operations in the CKF
algorithm, such as matrix square-rooting and matrix
inversion, can destroy the symmetry and the (semi-
)positive definiteness of covariance matrices. Some
nonlinear filtering problems can also be numerically
ill-conditioned. A remedy to this problem is the square-
root extension of the CKF, known as SCKF (square-root
cubature Kalman filter), which preserves the desired
properties of covariance matrices and increases numer-
ical accuracy.

As for the wave excitation force estimation problem,
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a CKF wave excitation force estimator was proposed
in [7], based on a linear state-space model. Regret-
tably, undesirable large estimation errors on yaw were
observed for several scenarios, primarily attributed to
model errors resulting from kinematics linearization.
Furthermore, although the CKF (and SCKF) are known
to be straightforward to apply, the tuning of covariance
matrices of the process and observation model noises
remains troublesome.

In this paper, to jointly address the challenges of
parameter tuning and nonlinear estimation accuracy,
we propose the more robust SCKF, in conjunction
with a heuristic method to adjust the error covari-
ance matrix. In our estimator, a nonlinear dynamic
system of dimension 72 is used to predict the system
dynamics at the cubature points, and to estimate the
6-dimensional excitation force. In addition, we show
that careful scaling of system state can substantially
reduce estimation errors on yaw. Furthermore, thanks
to the parallelization capability and moderate compu-
tational complexity of the SCKF, online implementation
becomes feasible by slightly increasing the sampling
time step, albeit at the price of a minor performance
degradation.

It is important to highlight that our heuristic co-
variance adaptation method, despite being founded
on a numerical sensitivity analysis and requiring cal-
ibration of several hyper-parameters, holds practical
significance. This is because it is easy to calibrate
and seems to be easily extendable to other estimation
problems. For our wave force estimator, according
to the sensitivity analysis, only 3 hyper-parameters
are to be tuned. Numerical results show that, these
hyper-parameters do not need to be tuned based on
simulations performed on a wide range of expected
sea conditions: we only need to tune and fix them with
respect to a single sea state.

This paper is organized as follows. In section (II), we
recall the SCKF algorithm and present a brief stability
analysis, with respect to the covariance matrices tuning
parameters. In section III, we show how the SCKF is
applied to our wave excitation force estimation prob-
lem. Finally, Section IV shows numerical results, and
conclusions are drawn in Section V.

II. SQUARE ROOT CUBATURE KALMAN FILTER

Assuming Gaussian conditional densities, the key
to Bayesian filters is the computation of Gaussian
weighted integrals, the integrands of which are the
product of a nonlinear function with a Gaussian den-
sity. The main idea of the CKF is to approximate these
integrals using the cubature integration rules, which
are known to be numerically efficient. Compared to
the CKF, the SRCKF introduces two additional tech-
niques to improve numerical stability: the least-squares
method for the Kalman gain and the matrix triangular
factorizations or triangularizations for the covariance
updates.

Consider the following process and observation
models

xk = f(xk−1, uk−1) + vk−1 (1)
zk = h(xk) + wk (2)

where xk ∈ Rnx and zk ∈ Rnz represent the system
state and measurement at time k, f : Rnx 7→ Rnx and
h : Rnx 7→ Rnz are some known functions, {vk} and
{wk} are independent process and measurement Gaus-
sian noise sequences with zero means and covariances
Qk and Rk, respectively.

A. SCKF algorithm
In the following, Tria(·) denotes a general triangu-

larization algorithm (e.g., the QR decomposition) re-
sulting in a lower triangular matrix. We summarize the
square-root cubature Kalman filter (SCKF) algorithm as
below.

Setup. Let m = 2nx, and generate the cubature
points

ξi =

{√
nxei, i = 1, · · · , nx√
nxei−nx

, i = nx + 1, · · · , 2nx

where ei denotes the ith-column vector of the identity
matrix Inx .

Time Update
1) Evaluate the cubature points for i = 1, · · · ,m

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1. (3)

2) Evaluate the propagated cubature points for i =
1, · · · ,m = 2nx

X∗
i,k|k−1 = f(Xi,k−1|k−1, uk−1). (4)

3) Estimate the predicted state

x̂k|k−1 =
1

m

m∑
i=1

X∗
i,k|k−1. (5)

4) Estimate the square-root factor of the predicted
error covariance

Sk|k−1 = Tria
(
[X ∗

k|k−1 SQ,k−1]
)
, (6)

where SQ,k−1 denotes a square-root factor of
Qk−1 such that Qk−1 = SQ,k−1S

T
Q,k−1 and the

weighted, centered (prior mean is substracted off)
matrix

X ∗
k|k−1 =

1√
m
[X∗

1,k|k−1 − x̂k|k−1, · · · ,

X∗
m,k|k−1 − x̂k|k−1].

Measurement Update
1) Evaluate the cubature points for i = 1, · · · ,m

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1. (7)

2) Evaluate the propagated cubature points i =
1, · · · ,m

Zi,k|k−1 = h(Xi,k|k−1). (8)

3) Estimate the predicted measurement

ẑk|k−1 =
1

m
Zi,k|k−1.
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4) Estimate the cross-covariance matrix

Pxz,k|k−1 = Xk|k−1ZT
k|k−1, (9)

with the weighted, centered matrices

Xk|k−1 =
1√
m
[X1,k|k−1 − x̂k|k−1, · · · ,

Xm,k|k−1 − x̂k|k−1],

Zk|k−1 =
1√
m
[Z1,k|k−1 − ẑk|k−1, · · · ,

Zm,k|k−1 − ẑk|k−1].

5) Compute the matrices T11, T21, T22 using a trian-
gularization algorithm(

T11 O
T21 T22

)
= Tria

(
Zk|k−1 SR,k

Xk|k−1 O,

)
(10)

where SR,k denotes a square-root factor of Rk

such that Rk = SR,kS
T
R,k, T11 ∈ Rnz×nz and

T22 ∈ Rnx×nx are lower-triangular matrices, and
T21 ∈ Rnx×nz .

6) Estimate the Kalman gain

Wk = T21T
−1
11 . (11)

7) Estimate the updated state

x̂k|k = x̂k|k−1 +Wk(zk − ẑk|k−1). (12)

8) Estimate the square-root factor of the correspond-
ing error covariance

Sk|k = T22.

For the full mathematical derivation of the SCKF ,
the interested reader is referred to papers [6], [8].

Remark 1: A usual choice for the matrices Qk and
Rk are the covariances for the noise terms in (1)-(2).
However, these covariances are generally not known
a-priori, and other options exist: in deterministic esti-
mation problems without any noise, for instance, this
particular choice is not applicable.

As a matter of fact, the choice of matrices Qk and
Rk can impact the stability and accuracy of the SCKF
algorithm. In the next section, we provide a brief
analysis that sheds light on how to design the matrix
Qk.

B. Stability analysis of SCKF
We restrict the stability analysis to the linear obser-

vation model case

zk = Cxk + wk,

since it is the case for our WEC force application - see
Section III. Let us define the estimation error

ek+1 = xk+1 − x̂k+1|k+1, (13)

the prediction error

ek+1|k = xk+1 − x̂k+1|k, (14)

and the innovation

∆zk+1|k = zk+1 − ẑk+1|k = Cek+1|k. (15)

The Kalman gain defined by (11) has been derived from
its definition

Wk+1 = Pxz,k+1|kP
−1
zz,k+1|k,

with

Pxz,k+1|k = T21T
T
11 Pzz,k+1|k = T11T

T
11. (16)

(see details in [8]). In the linear measurement model
case, we can rewrite the Kalman gain as

Wk+1 = Pk+1|kC
TP−1

zz,k+1|k.

Then, by definitions (13)-(14) and (12), we have

ek+1 = ek+1|k −Wk+1∆zk+1

=
(
I − Pk+1|kC

TP−1
zz,k+1|kC

)
ek+1|k.

(17)

Expressing xk+1 and x̂k+1|k (5) as a Taylor series about
x̂k|k yields

xk+1 =f(x̂k|k, uk) +Akek +
1

2
eTk∇2f((x̂k|k, uk)ek

+ o(||ek||2) + vk ,

x̂k+1|k =
1

m

m∑
i=1

f(Sk|kξi + x̂k|k, uk)

=f(x̂k|k, uk) +Ak

m∑
i=1

Sk|kξi+

1

2

m∑
i=1

ξTi S
T
k|k∇

2f((x̂k|k, uk)(Sk|kξi) + o(||Sk|kξi||2)

where Ak = ∇f(x̂k|k, uk). In the linear process model
case, i.e., xk+1 = Akxk + vk, one has simply ek+1|k =
Akek + vk. In the nonlinear model case, in order to
take the higher order terms into account, we intro-
duce, like in [9], a time-varying diagonal matrix βk =
diag(β1,k, · · · , βnx,k) such that

ek+1|k = βkAkek + vk.

Therefore, defining

Dk := I − Pk+1|kC
TP−1

zz,k+1|kC ,

Φ(k + 1, k) := DkβkAk ,
(18)

the evolution of the estimation error (17) becomes

ek+1 = Φ(k + 1, k)ek +Dkvk. (19)

Define Φ(k′, k) = Φ(k′, k′ − 1)Φ(k′ − 1, k′ − 2) · · ·Φ(k +
1, k). By definition, the distribution of Dkv(k) is nor-
mal, specified by the zero means and the second
moment Qe(k) := E[(Dkvk)(Dkvk)

T ] = DkQkD
T
k . The

initial state e(k0) is also assumed normal with mean
m0 and covariance matrix Qe,0. The solution of this
normal and linear stochastic difference equation is a
normal stochastic process characterized by the mean
value function m(k) = E[ek] given by the difference
equation

mk+1 = Φ(k + 1, k)mk, (20)

with the initial condition m(k0) = m0, and the covari-
ance function Re(k

′, k) = Φ(k′, k)Pe(k), k′ ≥ k, where
Pe(k) := E[e(t)eT (t)] satisfies

Pe(k+1) = Φ(k+1, k)Pe(k)Φ
T (k+1, k) +Qe(k), (21)
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with initial condition P (k0) = Qe,0. The SCKF stability
analysis problem thus consists in evaluating the behav-
ior of the system (20) and (21).

The stability analysis of the mean value function
equation (20) can be done via standard analysis of time-
varying linear systems, see e.g. [10]–[12]. A classical
result is the following: the system (20) is asymptotically
stable if and only if

1) for any k0, there exists a bound M (which may
depend on k0) such that ∥Φ(k, k0)∥ ≤ M ;

2) limk→∞ Φ(k, k0) = 0.

A sufficient (but conservative) condition to ensure the
stability is simply to have the bound M ≤ 1 for all
k large enough. If the inequality is strict, we can get
asymptotic stability. Since we have

∥Φ(k + 1, k)∥ ≤ ∥I − Pk+1|kC
TP−1

zz,k+1|kC∥∥βk∥∥Ak∥,
(22)

we may expect to choose suitable Qk and Rk to make
the eigenvalues of ∥I − Pk+1|kC

TP−1
zz,k+1|kC∥ small

enough.
We observe that a small value for Rk leads to a small

value for Pzz,k+1|k (see (16) and (10)), and hence may
lead to instability.

As for the matrix Qk, the authors of [13], [14] pro-
posed to select it with the heuristic

Qk =
(
ρ∆zTk|k−1∆zk|k−1 + δ

)
I, (23)

where ρ and δ are chosen large and small enough
respectively. The idea is that when estimation error
is large (resp. small), Qk becomes large (resp. small)
enough to improve stability (resp. accuracy). This
heuristic has been motivated by the following obser-
vations :

• when the estimation error (innovation) is large, the
values of βk can be big and a small constant value
for Qk may lead to instability;

• a larger value for Qk can increase the predicted
error covariance Pk+1|k (see (6)) and thus improve
stability, at a price of a decrease in estimation
accuracy.

In the next section, we present how we apply the
SCKF to the wave excitation force estimation problem,
and propose a heuristic method to tune the matrix
Qk. It is worth noting that many previous articles
in the literature propose to adapt only one of the
matrices Rk and Qk, see e.g. [13]–[15]. Indeed, a large
Qk and a small Rk (resp. a small Qk and a large Rk)
indicate that we have more (resp. less) confidence on
the observations than on the model. Therefore, it is
generally sufficient to adjust only one of these matrices.
In this paper, we will fix the matrix Rk, thus focusing
solely on the tuning of Qk.

III. APPLICATION TO THE EXCITATION FORCE
ESTIMATION

A. Description and model of WEC device
As in [7], our study considers a CETO 6-like WEC.

The device involves a cylindrical buoy fully submerged
below the free surface, floating several meters deep,

and connected to the seabed through three identical
tether lines. The buoy undergoes motion in its six
hydrodynamic degrees of freedom as a result of the
wave excitation force. To harness this motion, each
leg of the buoy is equipped with a power take-off
(PTO) system, which converts the translational motion
of the tethers into electrical energy. To counteract the
static Archimedes force that would otherwise cause
the device to ascend to the surface, each tether line
is pre-tensioned. This pre-tensioning keeps the lines
under tension most of the time, so that the PTOs can
effectively exploit both directions of the reciprocating
motion of the tethers.

The device and its main geometrical characteristics
(with their notations) are shown in Figure 1.

Fig. 1. The considered WEC device.

Let us denote the gravity center of the buoy as

xG = (xG, yG, zG),

and the three rotations, corresponding to the Euler
angles, as

Θ = (θx, θy, θz).

There are 6 degree of freedom: surge, sway, heave, roll,
pitch, yaw. Under the small motion assumption, the
dynamics of the CETO system can be described by

MtotẌ = frad + fvisc + fhydstat + ftether + fe. (24)

where X := (xG,Θ), Ẋ and Ẍ are, respectively, the
generalized position, velocity and acceleration of the
buoy. Mtot is a diagonal matrix including the buoy
mass and inertia terms for each degree of freedom. The
wave excitation force fe in the 6 degrees of freedom
is considered as an unknown exogenous input of the
system. The other forces are defined in the following.

Viscous forces. The viscous damping force is given
by

fvisc(Ẋ) = −Cv∥Ẋ∥Ẋ,

where Cv = 1
2CdSd is a diagonal matrix with Cd the

matrix of the drag coefficients and Sd the cross-section
areas of the buoy perpendicular to the direction of
motion. A linearization of the viscous force leads to

fvisc(Ẋ) = BvẊ,

with Bv a constant matrix.
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Hydrostatic forces. The hydrostatic force is ex-
pressed as

fhydstat(X) = −KhsX+ fhs,0,

where Khs is a matrix provided by the WAMIT hydro-
dynamic modelling software, and fhs,0 is a constant
vector.

Tether forces. Under the assumption of small rota-
tion motion, the tether force ftether can be given by

ftether(X, u) =

3∑
i=1

(
(T0 + ui)ei

(R(Θ)ni0)× ((T0 + ui)ei)

)
,

ei =

−−−→
AiG0 + xG +R(Θ)ni0

∥
−−−→
AiG0 + xG +R(Θ)ni0∥

.

Here, T0 is a pretension term, R(Θ) is the rotation
matrix, and u = (u1, u2, u3) is the vector of PTO forces
exerted along each tether, i.e. the control input of the
system. Note that ei is the orientation of the tether i,
the length of which is li = ∥

−−−→
AiG0 + xG +R(Θ)ni0∥.

The tether force can be linearized under the assump-
tion of small disturbances fe and control inputs ui. The
linearized tether force can be written as

ftether(X, u) = Buu,

where the matrix Bu projects control forces to the buoy
centre of gravity. Note that the length li and the length
time-derivative l̇i of each tether can then be related to
the buoy position and velocity through a matrix Cl,i,
i.e. li = l0 + Cl,iX, l̇i = Cl,iẊ.

Radiation forces. The radiation force frad is given
by

frad(Ẋ, Ẍ) = −A∞Ẍ−Krad(t) ∗ Ẋ(t), (25)

where A∞ is the added mass at infinite frequency,
and Krad(t) is the radiation kernel response, obtained
from a boundary element method (BEM) hydrody-
namic database for the buoy. For control design and
implementation, as well as for efficient time-domain
simulations, the convolution integral term can be ad-
vantageously replaced by a state-space approximation
[16]: {

Ẋr = ArXr +BrẊ

Krad(t) ∗ Ẋ(t) = CrXr.
(26)

This approximation can be obtained by identifying
a state-space model from BEM-computed frequency-
domain data, namely the radiation kernel frequency
response K̂rad:

K̂rad = Brad(ω) + jω(Arad(ω)−A∞) (27)

Following the same approximation procedure de-
scribed in [7], the resulting full state space radiation
model (26) has an order of 54.

Further details on the modelling approach can be
found in [17], where a similar approach is presented for
a generic three-tether, fully-submersed point absorber.

B. State process and observation models
In order to apply the SCKF, we need to build process

and observation models of the form (1)-(2). The main
idea of the Kalman filter-based approach is to consider
the wave excitation force fe as a state. For the sake
of simplicity [4], a random walk model is used to
represent this additional state

fe(k + 1) = fe(k) + ve(k), (28)

where ve(k) describes the variation of fe(k) and is
considered as a random number. This model assumes
that, at each sampling time, the wave excitation force
takes a random step away from its previous value, and
the steps are independently and identically distributed
in size.

Let us define the state of the estimation system as

x := (X, Ẋ,Xr, fe). (29)

Then, we can derive a discrete-time state-space model
of the general form as

ẋk+1 = f(xk, uk)+vk := f0(xk)+

3∑
i=1

g(xk)uk+vk. (30)

Note that this model can be linear if we consider
linearized viscous and tether forces, i.e.

f(xk, uk) = A0xk +B0uk ,

where the matrix A0 is given by

A0 =

 06×6 I6 06×36

−Minv(Kp +KH) −MinvBv −MinvCr

036,×6 Br Ar

 ,

with Minv = (Mtot + Ainf )
−1, and the matrix B0 is

given by

B0 =

 06×6

MinvBu

036×6

 .

Here and in the following, we use In to denote an
identity matrix of dimension n× n.

A controllability analysis on the linearized system
was reported in [18] for a very similar WEC device,
via the computation of a frequency-based relative gain
array (RGA), which shows that (at the nominal position
of the buoy X = 06×1) the pitch θx and roll θy motions
are less controllable than the surge xg , sway yG and
heave zG motions. We will see in the numerical results
section that the estimates of wave force over pitch and
roll motions are less accurate. The poor controllability
over these motion directions may be one reason.

For simplicity, we suppose that the covariance matrix
Qk takes the form of

Qk =

(
0 0
0 Qk,22

)
, (31)

with Qk,22 ∈ Rnz×nz being a positive definite diagonal
matrix.

The observations of the system are supposed to be
the generalized position X and speed Ẋ of the buoy.
Therefore, the observation model is simply

zk = Cxk + wk, (32)
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where wk are measurement noises. The matrix C takes
the form

C =
(
Inz

0nz×(nx−nz)

)
. (33)

Now that we have the process model (30) and the
observation model (32), we can apply the SCKF. Unfor-
tunately, direct application of the SCKF fails because of
the convergence problems due to the huge differences
in the magnitudes of state components : while fe is of
order 1×106-1×107, the other components are of order
1 or less. We propose in the next section a remedy to
this problem: introducing a state scaling factor to bring
all components back to similar magnitudes.

C. State scaling
Instead of using directly fe in the state (29), we

replace it with a scaled state xe which satisfies

xe = sefe,

where se ∈ R6 = (se,1, · · · , se,6) with se,i > 0 small
enough. Obviously, by choosing a suitable scaling fac-
tor se, we can get similar magnitudes for all compo-
nents of the state.

In the following, we show an additional advantage
of introducing this scaling factor. Considering the pro-
cess model (30), due to the random walk model (28),
we have

Ak = ∇f(x̂k|k, uk) =

(
Ak,11 0
0 Ine

)
with ne = 6 the dimension of the wave excitation force,
and vk = (0(nx−nz)×1, ve(k)). Let us decompose matrix
Pk+1|k as

Pk+1|k =

(
P11 P12

P21 P22

)
,

where P11 ∈ Rnz×nz and the other matrices are of
suitable dimensions. Taking into account the form of
matrix C (33), the transition matrix (18) becomes

Φ(k + 1,k) =
(
I − Pk+1|kC

TP−1
zz,k+1|kC

)
βkAk

=

∗ ∗ 0
∗ ∗ 0
0 0 Ine

 ,
(34)

with ∗ some non-zero matrices. The identity Ine at
the right bottom of the transition matrix Φ(k + 1, k)
confirms our intuition: the random walk model (28)
produces bounded wave force estimates but preserves
as well the estimation error.

Keeping this in mind, we can see that the scaling
factor se indirectly reduces the process noise. Indeed,
rewriting (28) with the scaled state, we have

xe(k + 1) = xe(k) + seve(k), (35)

and hence the state noise vk in the process model (30)
becomes vk = (0(nx−nz)×1, seve(k)), which is much
smaller.

Remark 2: By setting an appropriate state scaling
factor se, the undesirable large estimation errors on the
yaw direction (reported in [7]) can be avoided.

In the next section, we propose a heuristic method
to adjust the matrix Qk, which is later shown to be
efficient by numerical experiments.

D. Choice of Qk

In order to avoid divergence or performance degra-
dation of standard SCKF due to the inadequate prior
knowledge on model noise statistics, the matrices Qk

and Rk should be chosen to ensure stability of the
algorithm while trying to decrease estimation errors.

Since the covariance matching techniques are among
the most popular methods to achieve this, we give here
a brief recall. The covariance matrix of the measure-
ment noise can be estimated from (see e.g. [19])

R̂k = E[∆zk∆
T
k ]− CPk|k−1C

T , (36)

where ∆z̄ = 1
N

∑N
j=1 ∆zk−j and

E[∆zk∆
T
k ] =

1

N − 1

N∑
j=1

(∆zk−j −∆z̄)(∆zk−j −∆z̄)T

can be estimated with a limited number of innovation
samples with an estimation window N . A similar
estimation exists also for the covariance matrix Qk if
the system is completely observable

CQ̂kC
T = E[∆zk∆

T
k ] + E[rkr

T
k ]− C(Pk|k + Pk|k−1)C

T ,
(37)

where rk = zk − Cxk|k.
Unfortunately, these commonly used covariance es-

timation approaches are not applicable in our case.
Indeed, we observe from numerical experiments that
(36) gives rise to negative definite Rk, and (37) gives
no information about how we should adjust the Qk

defined by (31). Keeping in mind that the choice of Qk

and Rk can be other than the real covariance matrices,
we propose to design our Qk with a heuristic method.

As mentioned in Section II, it is in general sufficient
to adjust only one of the matrices Rk and Qk, so we will
fix the matrix Rk in this paper. As for Qk, inspired by
(23), we adjust it according to the following heuristic
method:

1) Perform a numerical sensitivity analysis by mod-
ifying each non-zero component of Qk and ob-
serving its influence on the innovation ∆zk+1|k.

2) Adjust Qk according to the sensitivity analysis
results, in a component-wise manner.

In this heuristic method, the normalized mean
square error goodness-of-fit (GoF) is used to quantify
the sensitivity analysis results. The GoF is given by the
expression

GoF = 1−NMSE = 1− ∥s(t)− s̃(t)∥2
∥s(t)− s̄(t)∥2

, (38)

where s(t) is the time domain reference signal (the
”true” wave excitation force fe, fed to the plant model),
the bar notation denotes the mean value, s̃(t) is the
estimated signal, and the notation ∥ · ∥2 represents the
L2-norm of a vector [20]. GoF = 1 (or 100%, when ex-
pressed in percentage) would denote perfect estimation
of the reference wave excitation force component.

Let us present an example. According to the sensitiv-
ity analysis, increasing the third diagonal component
of Qk,22(3, 3) leads to an increase of the the GoF of the
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9th component of the innovation. Then, we can adjust
the corresponding component of Qk,22 by

Qk,22(3, 3) = cq,3,3 ·GoF k
innov(9), (39)

where cq,3,3 a tuning hyper-parameter, and GoF k
innov

denotes the GoF of the innovation computed at step
k. The matrix Qk is adaptively adjusted during the
estimation: every Nq estimator steps, we compute
GoF k

innov using the last Nq gathered innovations, and
then update the corresponding components of the Qk

matrix. Here we use a window of size Nq to alleviate
the computational burden associated to GoF k

innov .
Note that the hyper-parameters should be carefully

chosen, as too large values may yield accurate esti-
mates under ideal conditions (without measurement
noises), and yet lead to significant inaccuracies in
the presence of measurement noises. We will see a
numerical example in the next section.

To sum up, for our SCKF estimator, according to the
sensitivity analysis, we need to choose only 3 hyper-
parameters: one for the third, the fourth, and the fifth
diagonal component of Qk,22, respectively. We tune
and fix these hyper-parameters based on simulations
performed on a single sea state in the presence of ob-
servation noises. For all the other test sea states, we use
the same hyper-parameters and let the algorithm adjust
the matrix Qk every Nq estimator steps. Numerical
results will show the efficiency of this procedure.

IV. NUMERICAL RESULTS

A. Implementation and numerical setting
Recall that the dimension of the state x is nx = 72

(6 for X, 6 for Ẋ , and 54 for Xr) and the dimension
of the observation z is nz = 12 (6 for X, 6 for
Ẋ). The dimensions being quite high, the real-time
implementation of the SCKF with the nonlinear process
model becomes less straightforward. Fortunately, steps
(3), (4), (7), (8) in the SCKF can be parallelized. The
parallelization of the evaluation on the 2nx cubature
points, especially on the propagated cubature points
(4), makes the algorithm much more efficient.

In addition, we distinguish the SCKF time step from
the system simulation time step: we apply the time
update and measurement update of the SCKF every
Nstep ≥ 1 of the system simulation time. In general,
this comes at a price: the greater Nstep, the less accurate
the estimator. Therefore, Nstep should be chosen large
enough, while still ensuring acceptable performance.

In our experiments, the measurements X and Ẋ are
obtained by simulating the full model (24), with an
artificially generated wave signal and a spring-damper
feedback control law

ui = −kl,ili − kldot,i l̇i, i = 1, · · · , 3,

where coefficients kl,i and kldot,i are tuned by grid
search to maximize the mean energy production. Mea-
surement noises with normal distributions are then
added to simulated data. More precisely, we add to
each measurement component a noise wi ∼ N (µσi, 1),
where µ > 0 is the chosen noise level and σi is the
variance of the i-th component data.

In the following, we will simulate the WEC behavior
under the action of realistic short-crested irregular
waves, obtained using a cos− 2s directional spreading
function around the main wave direction θ0

D(θ) = cos

(
1

2
(θ − θ0)

)2s

. (40)

Moreover, for all numerical tests presented hereafter,
we set Nstep = 5 and the state scaling factor se = (1×
106, · · · , 1× 106, 1).

B. A case study
In this section, we present in details results of a case

study. A first comparison will show that our heuristic
method to adapt the matrix Qk dramatically improves
the quality of wave excitation force estimation, and a
second comparison will give a hint on the tuning of
the heuristic parameters.

We consider the case with noise level µ = 0.1 and
an irregular wave signal having characteristics Tp =
14 s (peak wave period), Hs = 3m (significant wave
height), θ0 = 60◦ (mean direction) and s = 5 (spreading
coefficient).

In Table I, the GoF of the observations X and Ẋ
are given for the test with both constant and adaptive
matrices Qk. We can see that the heuristic proposed in
section III-D significantly improves the GoF of the 4-th
component of X and the 4-th and the 5-th components
of Ẋ. These improvements lead to a significant accu-
racy increase of fe estimates over the roll and the pitch
motions, as shown in Fig. 2 and Fig. 3.

Constant Qk and Rk

GoF of X 99.96 99.97 99.97 96.62 98.98 99.21
GoF of Ẋ 99.73 99.75 98.33 63.37 85.73 99.34
GoF of fe 85.39 84.52 93.78 -38.16 -35.06 -

Adaptive Qk and Rk

GoF of X 99.96 99.97 99.97 99.98 99.97 99.07
GoF of Ẋ 99.73 99.74 99.53 99.61 99.73 99.19
GoF of fe 90.28 90.76 92.95 89.70 87.94 -

TABLE I
GOF (IN %) OF THE MEASUREMENTS AND THE WAVE MOMENT

ESTIMATES. NOISE LEVEL µ = 0.1.

In Table II, the GoF of the fe estimates without noise
(µ = 0) and with noise level µ = 0.05 are given.
We can see that the measurement noises degrade a
bit the estimation accuracy, which however remains
acceptable.

Suege Sway Heave Roll Pitch
µ = 0 97.06 96.50 98.52 92.67 91.36

µ = 0.05 95.41 95.10 97.97 91.86 91.41
TABLE II

GOF (IN %) OF WAVE MOMENT ESTIMATES.

Now we deal with the same wave signal, but set all
components of Qk to be 10 times larger than those of
the previous test. In Table III, the GoF of the wave force
estimates are given for different noise levels. Compared
to Table II, we can see that, when there is no measure-
ment noise (µ = 0), the GoF of the wave estimates
with larger Qk is higher. However, the larger Qk leads
to serious degradation in the cases with measurement
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Fig. 2. Comparison of fe and its estimate. Wave signal characteristics: Tp = 12 s, Hs = 3m, θ0 = 60◦, s = 5. Noise level µ = 0.1.

noises, especially over heave, roll, and pitch motions.
An intuitive explication for this phenomenon is that
when the measurement is quite noisy, one needs to
place less reliance on the measurement and instead
place greater trust in the process model (by setting Qk

smaller).

Suege Sway Heave Roll Pitch
µ = 0 97.37 96.76 99.17 99.72 99.35

µ = 0.05 95.52 95.27 64.13 -127.41 -407.23
µ = 0.1 89.91 90.64 -42.88 -893.61 -2245.11

TABLE III
GOF (IN %) OF WAVE MOMENT ESTIMATES : OBTAINED WITH

LARGER VALUES OF Qk COMPONENTS.

In the next section, we apply the SCKF with the
tuned heuristic method to a set of irregular wave
signals, and show that the proposed method give
acceptable estimation results for all the tested signals.

C. Additional results

To evaluate the estimator performance, in addition
to the GoF, we consider also the mean lag (or delay)
between the real signal and the estimated one. The
mean lag is estimated via cross-correlation, using the
Matlab function finddelay. The mean lag should not
be larger than the sampling time that will be used for
control.

A set of short-crested irregular wave signals are
generated (all with a spreading coefficient s = 5). Those
sea states represent a wide variety of scenarios, both
in terms of the main wave direction, which excites
predominantly different modes of motion, and in terms
of wave steepness, which enhance the non-linear dy-
namics.

Estimation results with different noise levels under
these irregular wave signals are summarized in Table
IV-VI. We can see that the wave estimator works well:
results show higher GoF in surge, sway, and heave
axes, with a small degradation in roll and pitch axes.
The GoF decreases with larger measurement noises,
but remains acceptable.

As for the mean lag, any value not larger than
the sampling time of the control system using the
wave excitation force estimates, should be considered
acceptable. Following the lines of [7], 0.5 s should
be a reasonable value for the 25 m-diameter buoy
considered in this work. In our experiments, the system
integration time step was set to 0.01 s and the SCKF
updates time step was 0.05 s (with Nstep = 5). We
can see from Table IV-VI that the estimator gives good
enough mean lags.

Remark 3: Several parameters of our heuristic method
need to be tuned, such as the parameter cq,3,3 in (39).
However, it is worth noting that the tuning procedure
has proven to be quite simple: we have conducted the
sensitivity analysis and tuned the parameters with the
case study of section IV-B with noise level µ = 0.1.
The resulting parameters turned out to be good enough
to obtain acceptable estimator performance for all the
tests of this section.

V. CONCLUSION

In a multi-DoF context, this paper has introduced
a readily adjustable SCKF framework for estimating
the wave excitation force acting on a submerged WEC.
The estimator has been designed based on a nonlinear
state-space system of order 66 of a CETO 6 - like device,
and tested with a set of multi-directional (short-crested)
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Fig. 3. Comparison of fe and its estimate: with Qk and Rk adjustments. Wave signal characteristics: Tp = 12 s, Hs = 3m, θ0 = 60◦, s = 5.
Noise level µ = 0.1.

irregular wave signals. With a careful state scaling
and a heuristic method to adapt the process noise
covariance matrix Qk, we have obtained consistently
good estimation results in all motion directions, despite
the presence of measurement (observation) noises.
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[7] H.-N. Nguyen, P. Tona, A. Mérigaud, M. Cocho, and A. Pichard,
“Wave excitation force estimation for a multi-dof wec via a
cubature kalman filter: Design and preliminary results,” in
International Conference on Offshore Mechanics and Arctic Engi-
neering, vol. 85192. American Society of Mechanical Engineers,
2021, p. V009T09A016.

[8] I. Arasaratnam, S. Haykin, and T. R. Hurd, “Cubature kalman
filtering for continuous-discrete systems: theory and simula-
tions,” IEEE Transactions on Signal Processing, vol. 58, no. 10,
pp. 4977–4993, 2010.

[9] K. Xiong, L. Liu, and H. Zhang, “Modified unscented kalman
filtering and its application in autonomous satellite navigation,”
Aerospace Science and Technology, vol. 13, no. 4-5, pp. 238–246,
2009.

[10] R. P. Agarwal, Difference equations and inequalities: theory, methods,
and applications. CRC Press, 2000.

[11] S. Sastry, Nonlinear systems: analysis, stability, and control.
Springer Science & Business Media, 2013, vol. 10.

[12] B. Zhou and T. Zhao, “On asymptotic stability of discrete-time
linear time-varying systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 8, pp. 4274–4281, 2017.

[13] J. Zarei, E. Shokri, and H. R. Karimi, “Convergence analysis
of cubature kalman filter,” in 2014 European Control Conference
(ECC). IEEE, 2014, pp. 1367–1372.

[14] M. Boutayeb and D. Aubry, “A strong tracking extended
kalman observer for nonlinear discrete-time systems,” IEEE
Transactions on Automatic Control, vol. 44, no. 8, pp. 1550–1556,
1999.

[15] S. C. Rutan, “Adaptive kalman filtering,” Analytical Chemistry,
vol. 63, no. 22, pp. 1103A–1109A, 1991.

[16] M. Folley, Numerical modelling of wave energy converters: state-of-
the-art techniques for single devices and arrays. Academic Press,
2016.

[17] J. Scruggs, S. Lattanzio, A. Taflanidis, and I. Cassidy, “Optimal
causal control of a wave energy converter in a random sea,”
Applied Ocean Research, vol. 42, pp. 1–15, 2013.

[18] N. Sergiienko, B. Cazzolato, M. Arjomandi, B. Ding, and
L. da Silva, “Considerations on the control design for a three-
tether wave energy converter,” Ocean Engineering, vol. 183, pp.
469–477, 2019.

[19] Y. Meng, S. Gao, Y. Zhong, G. Hu, and A. Subic, “Covariance
matching based adaptive unscented kalman filter for direct
filtering in ins/gnss integration,” Acta Astronautica, vol. 120, pp.
171–181, 2016.

[20] A. F. Davis and B. C. Fabien, “Wave excitation force estimation
of wave energy floats using extended kalman filters,” Ocean
Engineering, vol. 198, p. 106970, 2020.



PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3–7 SEPTEMBER 2023, BILBAO468–10

Surge Sway Heave Roll Pitch
GoF Lag GoF Lag GoF Lag GoF Lag GoF Lag

Tp = 8 s, Hs = 1m, θ0 = 0◦ 95.84 0.25 96.00 0.20 98.11 0.15 90.39 0.30 90.48 0.30
Tp = 8 s, Hs = 1m, θ0 = 30◦ 94.85 0.25 95.24 0.25 98.05 0.15 91.16 0.30 90.94 0.30
Tp = 8 s, Hs = 1m, θ0 = 60◦ 95.25 0.25 94.82 0.25 98.21 0.15 91.34 0.30 90.50 0.30
Tp = 10 s, Hs = 2m, θ0 = 0◦ 95.88 0.25 96.10 0.25 98.56 0.15 93.58 0.25 91.55 0.30
Tp = 10 s, Hs = 2m, θ0 = 30◦ 95.90 0.25 95.98 0.25 98.64 0.15 93.05 0.30 91.61 0.30
Tp = 10 s, Hs = 2m, θ0 = 60◦ 96.01 0.25 95.76 0.25 98.68 0.15 92.84 0.30 91.88 0.30
Tp = 12 s, Hs = 2m, θ0 = 0◦ 96.68 0.25 97.22 0.25 98.44 0.15 95.96 0.20 91.71 0.30
Tp = 12 s, Hs = 2m, θ0 = 30◦ 96.83 0.25 96.79 0.25 98.08 0.20 93.59 0.25 91.25 0.30
Tp = 12 s, Hs = 2m, θ0 = 60◦ 97.06 0.25 96.50 0.25 98.52 0.15 92.67 0.30 91.36 0.30
Tp = 14 s, Hs = 3m, θ0 = 0◦ 97.18 0.25 96.06 0.25 98.73 0.15 87.08 0.25 92.49 0.25
Tp = 14 s, Hs = 3m, θ0 = 30◦ 97.14 0.25 95.93 0.25 98.67 0.15 89.23 0.30 90.97 0.30
Tp = 14 s, Hs = 3m, θ0 = 60◦ 96.92 0.25 96.68 0.25 98.60 0.15 91.80 0.30 88.59 0.30

TABLE IV
NOISE LEVEL µ = 0: NMSE-GOF (IN %) AND MEAN LAGS (IN S) OF WAVE MOMENT ESTIMATES

.

Surge Sway Heave Roll Pitch
GoF Lag GoF Lag GoF Lag GoF Lag GoF Lag

Tp = 8 s, Hs = 1m, θ0 = 0◦ 94.10 0.25 95.00 0.20 98.00 0.15 90.31 0.30 90.42 0.30
Tp = 8 s, Hs = 1m, θ0 = 30◦ 94.12 0.25 94.38 0.25 97.93 0.15 91.00 0.30 90.56 0.30
Tp = 8 s, Hs = 1m, θ0 = 60◦ 94.27 0.25 94.01 0.25 98.04 0.15 91.15 0.30 90.67 0.30
Tp = 10 s, Hs = 2m, θ0 = 0◦ 95.50 0.25 95.70 0.25 98.39 0.15 93.31 0.25 91.41 0.30
Tp = 10 s, Hs = 2m, θ0 = 30◦ 95.51 0.25 95.56 0.25 98.62 0.15 92.79 0.30 91.57 0.30
Tp = 10 s, Hs = 2m, θ0 = 60◦ 95.62 0.25 95.40 0.25 98.61 0.15 92.76 0.30 91.91 0.30
Tp = 12 s, Hs = 2m, θ0 = 0◦ 95.54 0.25 95.81 0.25 98.02 0.15 93.36 0.20 91.65 0.30
Tp = 12 s, Hs = 2m, θ0 = 30◦ 95.21 0.25 95.78 0.25 97.68 0.15 92.50 0.25 90.74 0.30
Tp = 12 s, Hs = 2m, θ0 = 60◦ 95.41 0.25 95.10 0.25 97.97 0.15 91.85 0.30 91.41 0.30
Tp = 14 s, Hs = 3m, θ0 = 0◦ 95.81 0.25 94.00 0.25 98.44 0.15 84.48 0.25 91.95 0.25
Tp = 14 s, Hs = 3m, θ0 = 30◦ 95.97 0.25 94.47 0.25 98.47 0.15 88.11 0.30 90.68 0.30
Tp = 14 s, Hs = 3m, θ0 = 60◦ 95.93 0.25 95.42 0.25 98.15 0.15 90.59 0.30 89.32 0.30

TABLE V
NOISE LEVEL µ = 0.05: NMSE-GOF (IN %) AND MEAN LAGS (IN S) OF WAVE MOMENT ESTIMATES

.

Surge Sway Heave Roll Pitch
GoF Lag GoF Lag GoF Lag GoF Lag GoF Lag

Tp = 8 s, Hs = 1m, θ0 = 0◦ 91.92 0.25 92.16 0.20 95.91 0.15 89.83 0.30 90.00 0.30
Tp = 8 s, Hs = 1m, θ0 = 30◦ 92.06 0.25 91.82 0.25 96.60 0.15 90.37 0.30 89.98 0.30
Tp = 8 s, Hs = 1m, θ0 = 60◦ 91.65 0.25 91.81 0.25 96.41 0.15 90.87 0.30 90.30 0.30
Tp = 10 s, Hs = 2m, θ0 = 0◦ 94.48 0.25 94.73 0.25 96.89 0.15 92.76 0.25 91.09 0.30
Tp = 10 s, Hs = 2m, θ0 = 30◦ 94.25 0.25 94.40 0.25 97.85 0.10 92.29 0.25 91.29 0.30
Tp = 10 s, Hs = 2m, θ0 = 60◦ 94.38 0.25 94.31 0.25 97.38 0.10 92.32 0.30 91.84 0.30
Tp = 12 s, Hs = 2m, θ0 = 0◦ 92.10 0.25 91.39 0.25 93.52 0.10 84.87 0.20 90.39 0.30
Tp = 12 s, Hs = 2m, θ0 = 30◦ 90.72 0.25 92.54 0.25 92.22 0.15 88.95 0.25 89.16 0.30
Tp = 12 s, Hs = 2m, θ0 = 60◦ 90.28 0.25 90.76 0.25 92.95 0.15 89.70 0.30 87.94 0.25
Tp = 14 s, Hs = 3m, θ0 = 0◦ 91.78 0.25 88.18 0.25 95.45 0.10 79.24 0.25 87.94 0.25
Tp = 14 s, Hs = 3m, θ0 = 30◦ 92.52 0.25 89.73 0.25 95.57 0.10 83.48 0.30 86.98 0.25
Tp = 14 s, Hs = 3m, θ0 = 60◦ 93.06 0.25 91.56 0.25 94.40 0.10 85.80 0.30 86.07 0.25

TABLE VI
NOISE LEVEL µ = 0.1: NMSE-GOF (IN %) AND MEAN LAGS (IN S) OF WAVE MOMENT ESTIMATES

.


