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Abstract—The TALOS wave energy converter is a novel 

point absorber-like wave energy converter (WEC), in which 

a unique power take-off (PTO) system is fully enclosed 

within the structure of the TALOS WEC (the hull), so to 

avoid direct contact with the harsh marine environment. 

This specific WEC is being investigated and developed at 

Lancaster University (UK), and the numerical modelling 

implementation of the TALOS wave energy converter is one 

of the main tasks of the Lancaster in-house time-domain 

analysis code. 

The PTO system of TALOS WEC consists of a heavy mass 

ball within the structure, which is linked with a number of 

linear springs and dampers to the hull of TALOS WEC for 

wave energy conversion. Such an arrangement of the PTOs 

could in principle convert the energy from all motion modes 

of the wave energy converter, but it would also make the 

PTO essentially non-linear, regardless the actual PTO 

damper’s characteristics (linear or nonlinear). Therefore, a 

time domain analysis must be established for the TALOS 

WEC, which is the research work in this investigation. 
 

Keywords— Multi-axis WEC, TALOS WEC, Time-domain  

analysis, two-body system.   

I. INTRODUCTION 

HE TALOS wave energy converter (WEC) is a novel 

wave energy converter, which was proposed and now 

is being developed at Lancaster University, UK [1, 2]. 

Figure 1 shows 3 shapes of different TALOS (a: octagonal, 

b: triangular and c: circular) and d) is the panels for the 

octagonal TALOS. In principle, the TALOS WEC is a point-

absorber-like device, but with a very specific PTO system: 

the TALOS PTO system consists of a mass ball inside of the 

WEC, and the springs and PTO dampers are linked 

between the mass ball and the structure (see Figure 1b). 

Such an arrangement would make the TALOS a fully 
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enclosed WEC, and no moving parts are exposed to the 

harsh marine environment, in a manner like other fully 

enclosed WECs, such as the SeaREV and other mass 

moving WECs [3, 4]. 

The PTO arrangement in TALOS WEC would also make 

the TALOS a factual multi-axis WEC, in a similar manner 

to other WECs using the multiple motion modes for wave 

energy conversions [5-7]. In principle, the TALOS device 

could convert wave energy through different motion 

modes of the structure, and this could provide an efficient 

conversion for wave energy.  

 

 

 
Figure 1   TALOS models: a) octagonal, b) triangular (and the PTO 

system), c) circular, and (d) the panels for the octagonal TALOS. 

 

The challenges to model the TALOS WEC is the flexible 

connections between the structure and the ball, in which 

the structure motion is under the wave excitations, while 
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the ball motions is via the PTO forces/moments acting on 

the ball (acting on the structure too). To model the TALOS 

WEC, a numerical tool is being developed for this device, 

with the focus on how to best represent the mass-

ball/springs/dampers PTO system. The links between the 

mass ball and the structure via the springs and PTO 

dampers would make the PTO essentially non-linear, 

regardless whether the actual PTO dampers are linear or 

nonlinear: the springs are generally linear, but PTO 

dampers can be either nonlinear or linear, depending on 

the actual PTO dampers. Therefore, a time domain 

analysis must be established for the TALOS WEC. 

Towards this goal, an in-house time-domain model is 

being developed and validated at Lancaster University.    

To build a numerical model for TALOS WEC, the 

Lancaster in-house time-domain code is based on the 

hybrid frequency-time domain approach (see more details 

in [8] and [9]). That is, the basic frequency-domain 

hydrodynamic parameters are analysed using the popular 

panel codes, such as WAMIT, HAMS, NEMOH. Then the 

relevant frequency-dependent parameters are 

transformed for the Cummins’ time-domain equation, 

such as the added mass at infinite frequency, and the 

memory effect (the convolution terms), as well as the wave 

excitation forces/moments.  

The remaining sections are arranged as follows. In 

Section II, the description and the basic hydrodynamics of 

the TALOS WEC are given; in Section III, the time-domain 

approaches are formulated as the dynamics of a two-body 

system, via the PTO connections so for wave energy 

conversion; Section IV provides the calculations of the 

forces and moments acting on the mass ball and the hull, 

while in Section V, some results and the relevant analyses 

are given; and finally the conclusions are cited in Section 

VI. 

II. HYDRODYNAMICS OF TALOS WEC   

A. TALOS energy conversion  

The TALOS WEC can be taken as a two-body system: one 

body is the hull of the structure, which interacts with the 

incoming waves and under the wave excitations the hull 

would move in 6-degrees of freedom (DOFs) as a rigid 

body, while the mass ball inside the hull would be linked 

to the hull via the springs and PTO dampers (see Figure 2 

for an illustration). In wave energy conversion, the hull 

moves under the wave excitation, while the mass ball 

remains relatively stationary in an ideal situation, such 

that the relative motions between the hull and the mass 

ball could drive the PTO dampers to convert the wave 

energy into useful energy, such as the high-pressure flows 

using the hydraulic systems or the electricity using the 

direct drive. 

B. Frequency domain analysis of the hull in waves 

To study the hydrodynamic responses of the TALOS WEC, 

we can assume the mass ball in the TALOS is rigidly 

connected to the hull, such that the overall TALOS 

structure would have the correct draft and hydrodynamic 

features (see Figure 3).  

 
Figure 2 Multi-axis energy conversion system for TALOS 

 
Figure 3 Hull and ball as a rigid body: the rigid connections 

between hull and ball 
 

The hydrodynamics of the TALOS can be carried out using 

as a conventional panel method. Following WAMIT [10], 

the frequency-domain dynamic equation of 6-DOFs of a 

rigid structure is given in a form of mass-spring-damper 

system, as below: 

∑{−𝜔2[𝑀𝑗𝑘 +𝑀𝑗𝑘
𝐸 + 𝐴𝑗𝑘(𝜔)] + 𝑖𝜔[𝐵𝑗𝑘(𝜔) + 𝐵𝑗𝑘

𝐸 ]

6

𝑘=1

+ (𝐶𝑗𝑘 + 𝐶𝑗𝑘
𝐸 )}𝜉𝑘(𝜔) = 𝐹𝑗

 (𝜔) 

 

(1) 

where ω is the circular frequency of the wave excitation, 

and the parameters with the variable ω mean their 

frequency dependency; 

𝑀𝑗𝑘 , 𝑀𝑗𝑘
𝐸 , 𝐴𝑗𝑘(𝜔) (𝑗, 𝑘 =  1, 2, … , 6)  are the structural, 

external and added mass matrices/coefficients, and the 

first two must be specified for the numerical modelling, 

while the last can be assessed using the panel method;  

𝐵𝑗𝑘(𝜔), 𝐵𝑗𝑘
𝐸  (𝑗, 𝑘 =  1, 2, … , 6) are the radiation and external 

damping coefficients, with the first being assessed using 

the panel method, while the last must be specified in the 

numerical modelling; 
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𝐶𝑗𝑘 , 𝐶𝑗𝑘
𝐸  (𝑗, 𝑘 =  1, 2, … , 6)  are the hydrostatic and external 

restoring coefficients of the hull (both must be specified or 

calculated). The definition of the hydrostatic restoring 

coefficients 𝐶𝑗𝑘  can be found in WAMIT manual [10];  

𝐹𝑗
 (𝜔)(𝑗 =  1, 2, … , 6) is the frequency-dependent complex 

amplitude of the wave excitation, which can be calculated 

using the panel method; 

𝜉𝑘(𝜔)(𝑘 = 1, 2, … , 6,   corresponding to the motions of 

surge, sway, heave, roll, pitch and yaw respectively) is the 

frequency-dependent complex amplitudes of motions of 

the floating structure, which are solved from the above 

dynamic equation. In applications, the response amplitude 

operator (RAO) is the more useful expression, defined as 

𝜒𝑘 =
𝜉𝑘

𝐴
 (2) 

where A is the wave amplitude (here the wave amplitude 

A is without a subscript or superscript). Obviously in the 

wave of a unit amplitude, the frequency-dependent 𝜉𝑘 

itself is the RAO.  

III. TIME-DOMAIN DYNAMIC EQUATIONS 

The interaction between the mass ball is considered as an 

independent rigid body. Hence the TALOS WEC is a two-

body system: the hull of the TALOS device and the mass 

ball, with the PTO forces acting between them. In 

mathematical expressions, the motions of the hull and of 

the mass ball are linked through the forces and moments 

from the springs and the PTO dampers. 

A. Dynamic equation for the hull 

The mathematical equations for the hull motion in time 

domain are the hybrid frequency-time domain equations 

(see [8, 9]), where the fundamental hydrodynamic 

parameters are calculated based on the one-off frequency 

domain analysis, such as, the added mass at infinite 

frequency, the impulse functions and the excitation 

forces/moments (see details in [8]). 

The motions in all 6-DOFs can be obtained by solving the 

time-domain equations, Eq. (3) below: 

 
 

{
 
 
 
 

 
 
 
 𝑚𝑠𝑥̈ℎ1(𝑡) + ∑ 𝐴1𝑗

6
𝑗=1 𝑥̈ℎ𝑗(𝑡) + ∑ ∫ 𝐾1𝑗(𝑡 − 𝜏)𝑥̇ℎ𝑗(𝜏)𝑑𝜏

𝑡

0
6
𝑗=1 + ∑ 𝐶1𝑗

6
𝑗=1 𝑥ℎ𝑗(𝑡) = 𝐹1

𝑒𝑥(𝑡) + 𝐹ℎ1
𝑝𝑡𝑜
(𝑡) + 𝐹ℎ1

𝑠𝑝𝑟
(𝑡)

𝑚𝑠𝑥̈ℎ2(𝑡) + ∑ 𝐴2𝑗
6
𝑗=1 𝑥̈ℎ𝑗(𝑡) + ∑ ∫ 𝐾2𝑗(𝑡 − 𝜏)𝑥̇ℎ𝑗(𝜏)𝑑𝜏

𝑡

0
6
𝑗=1 + ∑ 𝐶2𝑗

6
𝑗=1 𝑥ℎ𝑗(𝑡) = 𝐹2

𝑒𝑥(𝑡) + 𝐹ℎ2
𝑝𝑡𝑜
(𝑡) + 𝐹ℎ2

𝑠𝑝𝑟
(𝑡)

𝑚𝑠𝑥̈ℎ3(𝑡) + ∑ 𝐴3𝑗
6
𝑗=1 𝑥̈ℎ𝑗(𝑡) + ∑ ∫ 𝐾3𝑗(𝑡 − 𝜏)𝑥̇ℎ𝑗(𝜏)𝑑𝜏

𝑡

0
6
𝑗=1 + ∑ 𝐶3𝑗

6
𝑗=1 𝑥ℎ𝑗(𝑡) = 𝐹3

𝑒𝑥(𝑡) + 𝐹ℎ3
𝑝𝑡𝑜
(𝑡) + 𝐹ℎ3

𝑠𝑝𝑟
(𝑡)

𝐼𝑠44𝑥̈ℎ4(𝑡) + ∑ 𝐴4𝑗
6
𝑗=1 𝑥̈ℎ𝑗(𝑡) + ∑ ∫ 𝐾4𝑗(𝑡 − 𝜏)𝑥̇ℎ𝑗(𝜏)𝑑𝜏

𝑡

0
6
𝑗=1 + ∑ 𝐶4𝑗

6
𝑗=1 𝑥ℎ𝑗(𝑡) = 𝐹4

𝑒𝑥𝑐(𝑡) + 𝑀ℎ1
𝑝𝑡𝑜
(𝑡) + 𝑀ℎ1

𝑠𝑝𝑟
(𝑡)

𝐼𝑠55𝑥̈ℎ5(𝑡) + ∑ 𝐴5𝑗
6
𝑗=1 𝑥̈ℎ𝑗(𝑡) + ∑ ∫ 𝐾5𝑗(𝑡 − 𝜏)𝑥̇ℎ𝑗(𝜏)𝑑𝜏

𝑡

0
6
𝑗=1 + ∑ 𝐶5𝑗

6
𝑗=1 𝑥ℎ𝑗(𝑡) = 𝐹5

𝑒𝑥(𝑡) + 𝑀ℎ2
𝑝𝑡𝑜
(𝑡) + 𝑀ℎ2

𝑠𝑝𝑟
(𝑡)

𝐼𝑠66𝑥̈ℎ6(𝑡) + ∑ 𝐴6𝑗
6
𝑗=1 𝑥̈ℎ𝑗(𝑡) + ∑ ∫ 𝐾6𝑗(𝑡 − 𝜏)𝑥̇ℎ𝑗(𝜏)𝑑𝜏

𝑡

0
6
𝑗=1 + ∑ 𝐶6𝑗

6
𝑗=1 𝑥ℎ𝑗(𝑡) = 𝐹6

𝑒𝑥(𝑡) + 𝑀ℎ3
𝑝𝑡𝑜
(𝑡) + 𝑀ℎ3

𝑠𝑝𝑟
(𝑡)

 

  (3) 

where 

𝑥ℎ𝑘 (k = 1, 2, …, 6) are the structure motions of 6 DOFs, which can be solved from the dynamic equation 

𝐴𝑗𝑘  (j, k = 1, 2, …, 6) the added mass/moment of inertia at infinite frequency (can be assessed based on the panel method) 

𝐾𝑗𝑘  (j, k = 1, 2, …, 6) the impulse functions (assessed based on the parameters from the panel method) 

𝐶𝑗𝑘  (j, k = 1, 2, …, 6) the hydrodynamic restoring coefficients (Panel method should include the assessment 

𝐹𝑗
𝑒𝑥  (j = 1, 2, …, 6) the wave excitation forces and moments along and around x-, y- and z-axes, respectively 

𝐹ℎ(1,2,3)
𝑝𝑡𝑜  and 𝐹ℎ(1,2,3)

𝑠𝑝𝑟  are the forces acting on the hull from the PTOs and springs along x-, y- and z-axes, respectively (the 

calculations of the forces/moments from the PTO can be found in Section IV), and 

𝑀ℎ(1,2,3)
𝑝𝑡𝑜 and 𝑀ℎ(1,2,3)

𝑠𝑝𝑟   are the moments acting on the hull from the PTOs and springs around x-, y- and z-axes, respectively. 

 

B. Dynamic equation for the ball 

The forces/moments acting on the mass ball are those PTO 

forces/moments, thus, the mathematical equations for the 

motions of the mass ball can be written as 

{
 
 
 

 
 
 
𝑚𝑏𝑥̈𝑏1(𝑡) + 𝐵𝑏1𝑥̇𝑏1(𝑡) = 𝐹𝑏1

𝑝𝑡𝑜
(𝑡) + 𝐹𝑏1

𝑠𝑝𝑟
(𝑡)

𝑚𝑏𝑥̈𝑏2(𝑡) + 𝐵𝑏2𝑥̇𝑏2(𝑡) = 𝐹𝑏2
𝑝𝑡𝑜
(𝑡) + 𝐹𝑏2

𝑠𝑝𝑟
(𝑡)

𝑚𝑏𝑥̈𝑏3(𝑡) + 𝐵𝑏3𝑥̇𝑏3(𝑡) = 𝐹𝑏3
𝑝𝑡𝑜
(𝑡) + 𝐹𝑏3

𝑠𝑝𝑟
(𝑡)

𝐼𝑏44𝑥̈𝑏4(𝑡) + 𝐵𝑏4𝑥̇𝑏4(𝑡) = 𝑀𝑏1
𝑝𝑡𝑜
(𝑡) + 𝑀𝑏1

𝑠𝑝𝑟
(𝑡)

𝐼𝑏55𝑥̈𝑏5(𝑡) + 𝐵𝑏5𝑥̇𝑏5(𝑡) = 𝑀𝑏2
𝑝𝑡𝑜
(𝑡) + 𝑀𝑏2

𝑠𝑝𝑟
(𝑡)

𝐼𝑏66𝑥̈𝑏6(𝑡) + 𝐵𝑏6𝑥̇𝑏6(𝑡) = 𝑀𝑏3
𝑝𝑡𝑜
(𝑡) + 𝑀𝑏3

𝑠𝑝𝑟
(𝑡)

 

 
 

 

(4) 

with 𝑥𝑏𝑗 (j = 1, 2,…, 6) being the ball motions of 6 DOFs  

𝑚𝑏: the mass of the ball 

𝐼𝑏44 , 𝐼𝑏55 , 𝐼𝑏66 :  the moments of inertia of the ball (for a 

sphere, 𝐼𝑏44 = 𝐼𝑏55 = 𝐼𝑏66 =  
2

5
 𝑚𝑏𝑅

2)  with R being the 

radius of the sphere 

𝐵𝑏𝑗 (j = 1, 2,…, 6): the linear added damping coefficient for 

the mass ball motions 

𝐹𝑏(1,2,3)
𝑝𝑡𝑜  and 𝐹𝑏(1,2,3)

𝑠𝑝𝑟  are the forces acting on the ball from 

the PTOs and springs along x-, y- and z-axes, respectively, 

and 

𝑀𝑏(1,2,3)
𝑝𝑡𝑜  and 𝑀𝑏(1,2,3)

𝑠𝑝𝑟   are the moments acting on the ball 

from the PTOs and springs around x-, y- and z-axes, 

respectively. 
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IV. FORCES AND MOMENTS DUE TO PTOS 

A. Coordinates of connection points (for springs and dampers) 

To calculate the PTO forces and moments, the connection 

points, (𝑥𝑏 , 𝑦𝑏, 𝑧𝑏) on the mass ball and (𝑥ℎ , 𝑦ℎ, 𝑧ℎ) on the 

hull, for the springs and PTO dampers must be calculated, 

see the illustration in Figure 4.  

The roll (φ)-pitch (θ)-yaw (ψ) sequence of rotations is 

adopted following WAMIT, and the rotational matrix is 

calculated as 

𝑅 = (
1 0 0
0 𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
0 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

) × (
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
) 

× (
𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

) 

 

 

 

(5) 

This rotation expression would be same for both rational 

motions of the hull and the ball. Here the rotational 

motions are defined as follows: for roll, 𝜑 = 𝑥𝑏4  o r  

𝜑 = 𝑥ℎ4  for the ball and the hull, respectively; and 

similarly, for pitch, 𝜃 = 𝑥𝑏5  o r  𝜃 = 𝑥ℎ5  for the ball and 

the hull; and for yaw, 𝜓 = 𝑥𝑏6 o r  𝜓 = 𝑥ℎ6 for the ball and 

the hull. In applications, a simplified rotational matrix is 

possible if the rotation angles are small, see details in 

WAMIT manual [10]. 

 
Figure 4 An illustration of the connection points (this is same for 

springs) 

 

The position of the connection point (𝑋ℎ , 𝑌ℎ, 𝑌ℎ) on the hull 

is calculated as: 

(

𝑋ℎ
𝑌ℎ
𝑍ℎ

) = (

𝑥ℎ1
𝑥ℎ2
𝑥ℎ3

) + 𝑅 (

𝑥ℎ0
𝑦ℎ0
𝑧ℎ0

) 
(6) 

Here 𝑥ℎ1, 𝑥ℎ2, 𝑥ℎ3 are the translational motions of the hull 

(the solutions from Eq. 3), while (𝑥ℎ0, 𝑦ℎ0, 𝑧ℎ0)  is the 

original position of the connection point on hull when the 

hull is in the equilibrium position. 

Similarly, the position of the connection point (𝑋𝑏 , 𝑌𝑏, 𝑍𝑏) 

on the ball would be calculated as 

(

𝑋𝑏
𝑌𝑏
𝑍𝑏

) = (

𝑥𝑏1
𝑥𝑏2
𝑥𝑏3

) + 𝑅 (

𝑥𝑏0
𝑦𝑏0
𝑧𝑏0
) 

 

(7) 

Here 𝑥𝑏1, 𝑥𝑏2, 𝑥𝑏3 are the translational motions of the ball, 

while (𝑥𝑏0, 𝑦𝑏0, 𝑧𝑏0)  is the original position of the 

connection point on the ball when the ball in the 

equilibrium position. 

The length between two connection points (on the hull and 

on the ball) 

𝐿 = √(𝑋ℎ − 𝑋𝑏)
2 + (𝑌ℎ − 𝑌𝑏)

2 + (𝑍ℎ − 𝑍𝑏)
2 (8) 

And the original length (i.e., in calm water) is given as 

𝐿0 = √(𝑥ℎ0 − 𝑥𝑏0)
2 + (𝑦ℎ0 − 𝑦𝑏0)

2 + (𝑧ℎ0 − 𝑧𝑏0)
2 

(9) 

B. Forces and moments due to PTO dampers 

Figure 5 shows the connecting points in the reference 

coordinate system and the corresponding forces acting on 

the connection points on the ball and on the hull. 

 
Figure 5 Force and moment calculation for the PTO 

 

The vector for the two connection points (from the 

connection point on the ball to the connection point on the 

hull) would be given as 

∆𝑟 = 𝑟ℎ − 𝑟𝑏 = (𝑋ℎ − 𝑋𝑏)𝑖 + (𝑌ℎ − 𝑌𝑏)𝑗 + (𝑍ℎ
− 𝑍𝑏)𝑘⃗⃗ 

(10) 

Obviously, this vector would be in the same direction with 

PTO force 𝐹⃗𝑏
𝑝𝑡𝑜

 (shown in Figure 5). 

For a linear PTO, its force 𝐹𝑏
𝑝𝑡𝑜  along the PTO would be 

proportional to the PTO velocity, and it is calculated as 

𝐹𝑏
𝑝𝑡𝑜
(𝑡) = 𝐵𝑝𝑡𝑜

𝐿(𝑡) − 𝐿(𝑡 − ∆𝑡)

∆𝑡
 

 

(11) 

Here 𝐵𝑝𝑡𝑜  is the linear PTO coefficient; 𝐿(𝑡) =

√(𝑋ℎ − 𝑋𝑏)
2 + (𝑌ℎ − 𝑌𝑏)

2 + (𝑍ℎ − 𝑍𝑏)
2 is the current length 

of the PTO, while 𝐿(𝑡 − ∆𝑡) is the PTO length calculated in 

the same manner at the previous time step. 

The PTO force components 𝐹𝑏1
𝑝𝑡𝑜 , 𝐹𝑏2

𝑝𝑡𝑜 , and 𝐹𝑏3
𝑝𝑡𝑜  in x-, y- 

and z-directions acting on the ball in the coordinate o-xyz 

would be calculated as 

{
 
 

 
 𝐹𝑏1

𝑝𝑡𝑜
= 𝐹𝑝𝑡𝑜 (

𝑋ℎ − 𝑋𝑏
𝐿

)

𝐹𝑏2
𝑝𝑡𝑜

= 𝐹𝑝𝑡𝑜 (
𝑌ℎ − 𝑌𝑏

𝐿
)

𝐹𝑏3
𝑝𝑡𝑜

= 𝐹𝑝𝑡𝑜 (
𝑍ℎ − 𝑍𝑏
𝐿

)

 

 

 

(12) 

(𝑋𝑏 , 𝑌𝑏 , 𝑍𝑏) 

𝐹⃗ℎ
𝑝𝑡𝑜

 
(𝑋ℎ, 𝑌ℎ, 𝑍ℎ)  
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Obviously, the force components acting on the hull would 

be just in the opposite directions, as 

{

𝐹ℎ1
𝑝𝑡𝑜

= −𝐹𝑏1
𝑝𝑡𝑜

𝐹ℎ2
𝑝𝑡𝑜

= −𝐹𝑏2
𝑝𝑡𝑜

𝐹ℎ3
𝑝𝑡𝑜

= −𝐹𝑏3
𝑝𝑡𝑜

 

 

(13) 

The moment vector acting on the ball (with regard to the 

origin of the coordinate) due to the force 𝐹⃗𝑏
𝑝𝑡𝑜

 would be 

calculated as 

𝑀⃗⃗⃗𝑏
𝑝𝑡𝑜

= 𝑟𝑏 × 𝐹⃗𝑏
𝑝𝑡𝑜

= [

𝑖 𝑗 𝑘⃗⃗
𝑋𝑏 𝑌𝑏 𝑍𝑏

𝐹𝑏1
𝑝𝑡𝑜

𝐹𝑏2
𝑝𝑡𝑜

𝐹𝑏3
𝑝𝑡𝑜

]

= (𝑌𝑏𝐹𝑏3
𝑝𝑡𝑜

− 𝑍𝑏𝐹𝑏2
𝑝𝑡𝑜
)𝑖

+ (𝑍𝑏𝐹𝑏1
𝑝𝑡𝑜

− 𝑋𝑏𝐹𝑏3
𝑝𝑡𝑜
)𝑗

+ (𝑋𝑏𝐹𝑏2
𝑝𝑡𝑜

− 𝑌𝑏𝐹𝑏1
𝑝𝑡𝑜
)𝑘⃗⃗ 

 

 

(14) 

That is, the moment components are given as 

{

𝑀𝑏1
𝑝𝑡𝑜

= 𝑌𝑏𝐹𝑏3
𝑝𝑡𝑜

− 𝑍𝑏𝐹𝑏2
𝑝𝑡𝑜

𝑀𝑏2
𝑝𝑡𝑜

= 𝑍𝑏𝐹𝑏1
𝑝𝑡𝑜

− 𝑋𝑏𝐹𝑏3
𝑝𝑡𝑜

𝑀𝑏3
𝑝𝑡𝑜

= 𝑋𝑏𝐹𝑏2
𝑝𝑡𝑜

− 𝑌𝑏𝐹𝑏1
𝑝𝑡𝑜

 

 

(15) 

The moment acting on the hull would be calculated as 

𝑀⃗⃗⃗ℎ
𝑝𝑡𝑜

= 𝑟ℎ × (−𝐹⃗𝑏
𝑝𝑡𝑜
) = −(𝑟𝑏 + ∆𝑟) × 𝐹⃗𝑏

𝑝𝑡𝑜

= −𝑟𝑏 × 𝐹⃗𝑏
𝑝𝑡𝑜

− ∆𝑟 × 𝐹⃗𝑏
𝑝𝑡𝑜

= −𝑟𝑏 × 𝐹⃗𝑏
𝑝𝑡𝑜

= −𝑀⃗⃗⃗𝑏
𝑝𝑡𝑜 

 

(16) 

Note: ∆𝑟 and 𝐹⃗𝑏
𝑝𝑡𝑜 are parallel, hence ∆𝑟 × 𝐹⃗𝑏

𝑝𝑡𝑜
= 0. 

This means the moment acting on the hull is just in the 

opposite directions: the ‘ − ‘  sign is for the moment of 

PTOs in the dynamic equation of the hull. 

C. Forces and moments due to springs 

In a similar manner, the connecting points for the springs of 

the PTO (see Figure 6). 

 

Figure 6 Force and moment calculation for the spring 

 

For a spring, its force 𝐹⃗𝑏
𝑠𝑝𝑟  (magnitude) along the spring 

would be calculated as, with L0 being the original length of 

the spring. 

𝐹𝑏
𝑠𝑝𝑟(𝑡) = 𝐾[𝐿(𝑡) − 𝐿0] 

(17) 

The spring force components 𝐹𝑏𝑥
𝑠𝑝𝑟, 𝐹𝑏𝑦

𝑠𝑝𝑟, and 𝐹𝑏𝑧
𝑠𝑝𝑟 in x-, y- 

and z-directions acting on the ball in the 𝑜 − 𝑥𝑦𝑧 

coordinate system would be given as 

{
 
 

 
 𝐹𝑏𝑥

𝑠𝑝𝑟
= 𝐹𝑏

𝑠𝑝𝑟
(
𝑋ℎ − 𝑋𝑏

𝐿
)

𝐹𝑏𝑦
𝑠𝑝𝑟

= 𝐹𝑏
𝑠𝑝𝑟
(
𝑌ℎ − 𝑌𝑏

𝐿
)

𝐹𝑏𝑧
𝑠𝑝𝑟

= 𝐹𝑏
𝑠𝑝𝑟
(
𝑍ℎ − 𝑍𝑏
𝐿

)

 

 

 

(18) 

Obviously, the force components acting on the hull would 

be just in the opposite directions, namely 

{

𝐹ℎ𝑥
𝑠𝑝𝑟

= −𝐹𝑏𝑥
𝑠𝑝𝑟

𝐹ℎ𝑦
𝑠𝑝𝑟

= −𝐹𝑏𝑦
𝑠𝑝𝑟

𝐹ℎ𝑧
𝑠𝑝𝑟

= −𝐹𝑏𝑧
𝑠𝑝𝑟

 

 
(19) 

This is why in the dynamic equation for the hull, the PTO 

and spring forces have ‘-‘ signs. 

The moment acting on the ball due to the force F would be 

calculated as 

𝑀⃗⃗⃗𝑏
𝑠𝑝𝑟

= 𝑟𝑏 × 𝐹⃗𝑏
𝑠𝑝𝑟

= [

𝑖 𝑗 𝑘⃗⃗
𝑋𝑏 𝑌𝑏 𝑍𝑏
𝐹𝑏𝑥
𝑠𝑝𝑟

𝐹𝑏𝑦
𝑠𝑝𝑟

𝐹𝑏𝑧
𝑠𝑝𝑟
]

= (𝑌𝑏𝐹𝑏𝑧
𝑠𝑝𝑟

− 𝑍𝑏𝐹𝑏𝑦
𝑠𝑝𝑟
)𝑖

+ (𝑍𝑏𝐹𝑏𝑥
𝑠𝑝𝑟

− 𝑋𝑏𝐹𝑏𝑧
𝑠𝑝𝑟
)𝑗

+ (𝑋𝑏𝐹𝑏𝑦
𝑠𝑝𝑟

− 𝑌𝑏𝐹𝑏𝑥
𝑠𝑝𝑟
)𝑘⃗⃗ 

 

(20) 

Accordingly, the moment components are given as 

{

𝑀𝑏𝑥
𝑠𝑝𝑟

= 𝑌𝑏𝐹𝑏𝑧
𝑠𝑝𝑟

− 𝑍𝑏𝐹𝑏𝑦
𝑠𝑝𝑟

𝑀𝑏𝑦
𝑠𝑝𝑟

= 𝑍𝑏𝐹𝑏𝑥
𝑠𝑝𝑟

− 𝑋𝑏𝐹𝑏𝑧
𝑠𝑝𝑟

𝑀𝑏𝑧
𝑠𝑝𝑟

= 𝑋𝑏𝐹𝑏𝑦
𝑠𝑝𝑟

− 𝑌𝑏𝐹𝑏𝑥
𝑠𝑝𝑟

 

 
(21) 

In a similar manner, the moment acting on the hull would 

be just opposite as 𝑀⃗⃗⃗𝑏
𝑠𝑝𝑟, namely 

𝑀⃗⃗⃗ℎ
𝑠𝑝𝑟

= −𝑀⃗⃗⃗𝑏
𝑠𝑝𝑟 

(22) 

V. RESULTS AND ANALYSIS 

In the following analysis, the PTO dampers and springs 

are assumed 6 (the spring and PTO damper have same 

connections on the ball and on the hull, as shown in Figure 

1b): 3 springs/PTO dampers are uniformly located at the 

bottom of the ball and 3 are on the top of the ball, see the 

coordinates of the connection points in Table I. The reason 

for such an arrangement is that we need a large force from 

the springs to support the heavy ball, such that the all 

springs are not fully compressed. In this regard, the 

springs coefficients must be large enough, but the strong 

springs would make the PTO system too stiff, and thus, 

inefficient for wave energy conversion.  

A target wave period of 10.0s (which roughly corresponds 

to the most occurred waves at West coast of Ireland, see 

the wave diagram in [11]), and wave height as 2.0m is 

taken as an example (Other parameters in the study are: 

(𝑋𝑏, 𝑌𝑏 , 𝑍𝑏) 

(𝑋ℎ, 𝑌ℎ, 𝑍ℎ) 
𝐹⃗ℎ
𝑠𝑝𝑟 
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centre of gravity=-5.0m, and the linear mooring 

coefficients: C11=C22=5,000,000 N/m, C66=10,000,000 Nm2. 

For a practical purpose, the 6 springs have a restoring 

coefficient of 400,000 N/m. It can be seen that the wave 

energy conversion would increase with the increase of the 

PTO damper coefficient (see Table II). However, the 

increase of wave energy conversion would slow down 

when the PTO damping coefficient is larger than 

150,000Ns/m.  

 

Table I The connection coordinates on the ball and on the hull 

on the ball on the hull 

x y z x y z 

2.500 0.000 -4.330 5.000 0.000 -8.660 

-1.250 2.165 -4.330 -2.500 4.330 -8.660 

-1.250 -2.165 -4.330 -2.500 -4.330 -8.660 

2.500 0.000 4.330 5.000 0.000 8.660 

-1.250 2.165 4.330 -2.500 4.330 8.660 

-1.250 -2.165 4.330 -2.500 -4.330 8.660 

 

Table II The wave power conversions with TALOS WEC 

𝐾0 (N/m) 𝐵𝑝𝑡𝑜 (Ns/m) 𝑃 (kW) 𝑇(s)/𝐻(m) 

400,000 25,000 146.6 10/2.0 

400,000 50,000 186.8 10/2.0 

400,000 75,000 228.3 10/2.0 

400,000 100,000 298.4 10/2.0 

400,000 150,000 380.4 10/2.0 

400,000 250,000 429.3 10/2.0 

400,000 500,000 543.9 10/2.0 

The corresponding motions and the wave energy 

conversion can be seen in Figure 7 (𝐾0 =400,000 N/m, 

𝐵𝑝𝑡𝑜=150,000 Ns/m). For a comparison, the hull motions 

(‘black solid line, TD’) and the ball motions (‘green solid 

line, ball’) are plotted, together with the hull motions of a 

free floating hull (with the mass ball fixed with the hull, 

‘dashed red line, FD’). For such a setup, the PTO springs 

are relatively strong, and the ball motions are large when 

compared to the hull motions (This is not an ideal 

situation, since the mass ball moves too much). 

In terms of wave energy conversion, we can see the surge 

and pitch motions of the hull are reduced in magnitude, 

when compared to the free floating hull and the fixed mass 

(also see Figure 2), meaning that the energy has been taken 

out from these two motions modes, on the other hand the 

heave motion of the hull is increased slightly, which 

advocates that the heave motion may not contribute 

significantly to the energy absorption. 

As a multi-axis WEC, the TALOS power conversion may 

not come to zero in a wave cycle (see Figure 7d), since there 

may be phase differences among the energy conversions 

from different DOFs. 

Table III shows the trend of wave energy conversion using 

different spring coefficients, and it can be seen that the 

wave energy conversion would increase with the decrease 

of the spring coefficient. However, to support the mass ball 

in the appropriate position for wave energy conversion, 

the springs must be strong enough, but not too soft, since, 

in that case, the mass ball would sit on the fully 

compressed springs.  

It should be noted that in all the above cases, the mooring 

system is quite stiff, such that the natural period of the 

surge motion is close to the natural period of pitch motion. 

In practice, such stiff mooring system may not be ideal. 

Using a softer mooring system (C11=C22=500,000 N/m, 

C66=1,000,000 Nm2), the wave energy conversion by 

TALOS for would be reduced significantly, to 158kW 

(compared to 369kW for 𝐾0 =400,000 N/m, 𝐵𝑝𝑡𝑜 =150,000 

Ns/m). The corresponding results are shown in Figure 8, 

where some low-frequency components in surge and pitch 

can be identified. 
 

Table III The wave energy conversion using different spring 

coefficients 

𝐾0 (N/m) 𝐵𝑝𝑡𝑜 (Ns/m) 𝑃 (kW) 𝑇(s)/𝐻(m) 

500,000 150,000 319.8 10/2.0 

400,000 150,000 369.0 10/2.0 

350,000 150,000 396.1 10/2.0 

300,000 150,000 408.5 10/2.0 

200,000 150,000 448.4 10/2.0 
 

(a)  
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(b)  

(c)  

(d)  
Figure 7 The motions of the hull and the mass ball and the power conversion. (a) surge, (b) heave, (c) pitch, (d) power conversion for a stiff 

mooring system C11=C22=5,000,000 N/m, C66=10,000,000 Nm2 and PTO with 𝐾0=400,000 N/m and 𝐵𝑝𝑡𝑜=150,000 Ns/m). . Legends: TD- time-domain 

solutions of the structure, FD- results directly based on frequency domain solutions (without PTOs) 

(a)  

(b)   
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(c)  

(d)  
Figure 8 The motions of the hull and the mass ball and the power conversion. (a) surge, (b) heave, (c) pitch, (d) power conversion. On a softer 

mooring (C11=C22=500,000 N/m, C66=1,000,000 Nm2) and PTO with 𝐾0=400,000 N/m, 𝐵𝑝𝑡𝑜=150,000 Ns/m. Legends: TD- time-domain solutions of 

the structure, FD- results directly based on frequency domain solutions (without PTOs).   

VI. CONCLUSIONS 

The main purposes of the work are to formulate the 

mathematical equation for the two-body system for 

TALOS WEC, and to initially study how the PTO springs 

and dampers could affect the wave energy conversion. 

Based on the results of the present analysis, the following 

conclusions can be derived: 

- For a given PTO spring coefficient, the wave energy 

conversion increases with the increase of the PTO 

damping coefficient. 

- For a given PTO damping coefficient, the wave energy 

conversion increases with the decrease of the PTO 

spring coefficient. However, the PTO springs must be 

chosen strong enough so to support the mass ball 

appropriately. 

- A difficulty has been found in the multi-axis WEC that 

the surge motion is strongly coupled with the pitch 

motion and, thus, the wave energy conversion could be 

affected significantly by the mooring system.   

Future work would include the validation of the present 

numerical model using other software packages, such as 

DNV SESAM and Chrono, as well as the experimental 

data; after that, the in-house time-domain analysis tool for 

TALOS would be used for optimising the TALOS WEC, 

including the PTO design and optimisation. 
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