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Techno-economic optimization of an offshore
hybrid power system:
Argentine Basin case study

Sarah May Palmer, Trent Dillon, and Brian Polagye

Abstract—Temporally continuous and spatially dis-
tributed measurements of Essential Ocean Variables are re-
quired to improve our understanding of the Earth’s oceans.
These measurements can be provided with combinations of
moored platforms and uncrewed underwater vehicles, but
with substantially higher power costs than conventional
ocean observation. While these power needs could be
provided by a single source of generation and battery
storage, a hybrid power system can potentially smooth
seasonal variations and reduce required generation and
storage capacities. To this end, we develop an optimization
model to identify minimum-capacity hybrid power systems
for a given location and load profile. The model considers
generation by wave energy converters, wind turbines, solar
photovoltaics, diesel generators, and current turbines with
a battery for energy storage. The model uses the load profile
and resource time series in a time-domain simulation of
the battery state of charge to calculate persistence. The
optimization model searches the design space for the
system with the minimum objective function value that can
satisfy persistence requirements. In this paper, we focus on
a case study of a hybrid power system serving an ocean
observation buoy with a resident UUV located at Argentine
Basin. As expected, identified hybrid systems have smaller
aggregate capacity than the single generator cases, but
the search for minimum-capacity systems within a five-
dimensional design space demonstrates the complexity of
hybrid optimization. Results show that hybridization is
beneficial, but that optimization to more nuanced metrics,
like system cost, will be challenging.

Index Terms—hybrid power, ocean observation, techno-
economic optimization, blue economy

I. INTRODUCTION

CEAN observation platforms paired with res-

ident uncrewed underwater vehicles (UUVs)
are potentially well-suited to long-term, spatially-
distributed oceanographic data collection. Such obser-
vations of Essential Ocean Variables are a current focus
for Global Ocean Observing Systems [1]. However, the
resolution and scope of data collection by these systems
is limited by power availability and energy storage [2].
In-situ power for ocean observation systems can be
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generated from a variety of sources including, diesel
generators [3], solar panels [4] [5], wave energy con-
verters (WECs) [6] [7] [8] [9] [10], wind turbines [11],
and current turbines [12]. Each generator option has
disadvantages, particularly in offshore environments:
diesel generators have finite endurance and require
expensive refueling operations, photovoltaic panel per-
formance can be hindered by resource availability [13]
and soiling [14], wind turbines can reduce platform
stability [14], and WECs and current turbines are de-
veloping technologies with unproven reliability.

Hybrid power systems, combining multiple gener-
ation sources, provide redundancy [11] and increase
total power generation for a given platform footprint
[15], [16]. Furthermore, a hybrid power system tai-
lored to a location’s specific resource availability can
potentially serve a load with less total generation and
storage capacity than would be required for a single-
resource system. The optimization of hybrid power
system design for oceanographic sites and load profiles
is functionally similar to the analysis that HOMER
conducts for remote, land-based hybrid power systems
[17]. However, HOMER does not include WECs and
is not designed for the specific economics of floating
offshore power systems (e.g., vessel based mainte-
nance/refueling operations, mooring costs).

There are limited examples of techno-economic anal-
yses for floating power system design [18], [19], [20].
Previously, Dillon et al. [19] defined a cost-optimal
power system for an ocean observation platform using
a wave energy converter and battery. The optimization
was performed for a constant, 200 W load case at
five deployment locations. Subsequent analysis [18]
expanded to consider photovoltaic panels, wind tur-
bine, or diesel generators at a subset of these locations.
The single-resource optimization shows that system
capacity requirements can be dramatically higher for
locations with significant seasonal resource asymmetry.
This suggests that hybrid power systems could sub-
stantially reduce required generation and storage.

Here, we present a hybrid power system optimiza-
tion based on the previously-developed single-resource
models in [18]. The hybrid systems incorporate a mix of
solar, wind, wave, current, and/or diesel generators, as
well as battery storage. We consider the system’s appli-
cation to a load case corresponding to power-intensive
ocean observation and periodic UUV recharge. As a
preliminary step to economic optimization, we employ
power system aggregate capacity as the optimization
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target for the hybrid power system, using this to
gain insight into hybrid platform design and assess
hybridization benefits. Aggregate capacity scales with
system size, which is also an important consideration
for the feasibility of offshore operations.

The remainder of this paper is organized as follows.
Section II describes the mission definition, location-
specific resources, and the energy generation, aggre-
gate capacity, and optimization models. Section III
presents the optimal system definitions for single-
resource and hybrid systems, as well as visualizations
of the design space near the minimum aggregate capac-
ity power system. Section IV discusses the behaviors
and limitations of different optimization algorithms, as
well as next steps in this analysis.

IT. METHODS

The following subsections outline the components
and implementation of the hybrid power system op-
timization model. This is an extension of the single-
resource optimization models developed by Dillon et
al. [18], [19]. The optimization objective is to find the
smallest aggregate capacity system (min(Jia)), that
can satisfy a “persistence” requirement (asim > 0.99).
Persistence refers to the fraction of the intended load
that is met by the power system. Because of the stand-
alone nature of the system, persistence must be as-
sessed by time domain simulation of resource availabil-
ity, storage, and load. Figure 1 provides an overview
of the modeling framework, including free parameters,
model constants, input time series, and approaches
to optimizing the free parameters. For a given six-
dimensional design space (one for each of the five
resources and one for battery storage), each iteration
of the optimization model identifies the persistence
and aggregate capacity across a range of power system
capacities. The optimization model is formatted such
that the result of multiple iterations is the minimum
aggregate capacity power system that satisfies the per-
sistence constraint. The challenges to this optimization
are the non-smooth nature of the design space and
the number of unique power systems that must be
evaluated in the time domain.

A. Ocean Observing Operations Concept

The power system is optimized to meet the spec-
ified load requirements given the time series of re-
source availability at the deployment location. While
the model can be adjusted for various platform de-
signs, maintenance schedules, and load profiles, the
mission design used in this analysis is as follows. The
load corresponds to an oceanographic instrumentation
package with periodic uncrewed underwater vehicle
(UUV) recharging (Figure 2). Power is provided by
a notional buoy. The mission life is six years with
a comprehensive maintenance (entire power system
replaced with a spare and refurbished on shore) ev-
ery two years. This operations concept constrains the
diesel generation case, since refueling and oil changes
are restricted to comprehensive maintenance intervals.
During maintenance, if the battery’s capacity has faded

PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3-7 SEPTEMBER 2023, BILBAO

by more than 20% [21] as a result of degradation,
it is replaced. Time series for solar irradiance, wind
speed, and sea state (significant wave height, H,,
and peak period, T,) are obtained from the National
Science Foundation’s Ocean Observatories Initiative
(OO0I) buoy at Argentine Basin (42.99 S, 42.5 W) at
roughly hourly resolution [23]. This location does not
have significant currents, but is adjacent to regions
with moderate ocean currents. For this analysis, a
composite location (“Modified Argentine Basin”) was
formulated with solar/wind/wave resources consis-
tent with Argentine Basin, and current resources from
the Hybrid Coordinate Model (HYCOM, [24] at 41.25
S, 52.03 W). The current data was in 3 hour intervals
at water depths 0 m to 300 m. The monthly average
power density of all four resources are summarized in
Figure 3.

The start and end times in the solar/wind/wave
data from OOI were chosen to obtain continuous
datasets. Measurement gaps (1-3 hr) and outliers were
replaced with interpolated data [18], [19]. The datasets
have two requirements to be valid inputs to the time
domain simulation: the time series data for each re-
source must be as long as the mission life, and the
seasonal and diurnal patterns of the resources must
be properly aligned. To meet these requirements we
created a data cleaning function that uses shorter and
misaligned input data as inputs. The cleaning function
interpolated the raw data to an hourly basis (the
current velocity was assumed to be constant between
each 3 hour interval). Datasets shorter than a year were
extended by duplicating data from a month equidistant
from January for the missing months. Then all the
datasets were duplicated to cover the six year mission
life. Lastly, the datasets were aligned so they all start
on the same day and same hour by duplicating data
from a year in the future for any missing time steps. Ex-
tending and aligning the data in this manner assumes
that inter-annual variations are generally subordinate
to seasonal variations. Future analysis will consider
longer duration data series to capture inter-annual
variation.

B. Energy Modeling

The central quantity of the energy model is the
battery state of charge, which evolves based on the
current state of charge, battery self discharge, I'(S(t)),
power produced by all resources, Py (), power draw,
L(t), and excess energy discarded, D(¢). This is math-
ematically described as

S(t+1) = S(H =T (S(1)+ At Pogar(t) = L(1)) = D(). (1)

Piotar(t) is the sum of power produced from all re-
sources:

]D’total(t) = Psolar(t) + Pwind(t) + Pwave(t)—’_
Pcurrent(t) + Pdiesel (t)

where the power from each generator is assumed to be
constant over an hour-long interval. The calculation of
power from the PV panels, wind turbine, and WEC fol-
low the same equations as the single resource models
[19], [18], overviewed as follows.

@
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Fig. 1. Optimization procedure for the hybrid model. The free parameters (generator rated power and battery capacity), model constants,
and input time series are used in the time domain simulation to determine persistence. During each iteration, the time domain simulation
and aggregate capacity estimation are evaluated for every point in a design space with up to six dimensions. The results are used to update

the design space for the next iteration.
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Fig. 2. Load profile (L(t)) for power-intensive ocean observation
platform with periodic UUV recharging. The ocean observing load
is a constant 322 W, modeled after the Adaptable Monitoring Package
[22]. The UUV recharging, patterned after wireless recharge of a
Remus 600 UUYV, requires an additional 632 W for 17 hours and
occurs every 7 days. Time series is shown for 20 days, but the pattern
repeats for the entire 6 year mission.

For the photovoltaic panels, we assume a panel effi-
ciency of 18% and an automated cleaning mechanism
to prevent soiling, with power (Psol.r) calculated as,

ndethr,solar(%) Z(t) < iy

P =
solar Z(t) > i

)

Ndegs Gr,solar

where i(t) is the irradiance at time ¢, i, = 1kVV/m2 is
the rated irradiance, and 7.4 + is the efficiency loss due
to panel aging (0.5% per year [25]).

Wind turbine power (Pying) is calculated as a func-
tion of wind speed adjusted to turbine hub height,

0 Uy () < Ui
Uy (t)a
Gr,wind( w3 ) U, ci < Uy (t> < Uw,ra
Pying = wora (4)
Gr,wind Uw,ra < Uy (t) S Uw,co
0 Uy (B) > Unp,co

where u,,(t) is the wind velocity at the turbine hub
height as a function of time, ¢, u,,,; is the wind turbine
cut-in speed (3 m/s), Uy rq is the rated speed (11 m/s),
and u, ¢, is the cut-out speed (30 m/s). These values
are consistent with American Wind Energy Association
(AWEA) standards [26]. The turbine rotor clearance
above the water surface is 4 m, with a rotor radius
given by,

2C7Y7ﬂ,wind

3
NwT Py rq

Rying = (5)
where 7. = 0.35 is the assumed wind to wire efficiency,
and p, is air density (1.225 kg/m?).

To find WEC power output, WEC capture width
ratio (CWR) is treated as a function of WEC size



3994

Modified

Argentine Basin

O

® Argentine
Basin

S

PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3-7 SEPTEMBER 2023, BILBAO

‘Wave
Power
Density 5 ] (a)
kW
m
0 1 1 1 1 1
01-2015 01-2016 01-2017 01-2018 01-2019 01-2020 01-2021
Wind
0.5
Power |-
Density (b)
kW
m?
(] 1 1 1 1 1
01-2015 01-2016 01-2017 01-2018 01-2019 01-2020 01-2021
Solar
Power | i
Density (C)
kwW 0.1F ]
Ill2
0 1 1 1 1 1
01-2015 01-2016 01-2017 01-2018 01-2019 01-2020 01-2021
Current I
Power 1t 1
Density
kW 0.5 g (d)
m?
(] 1 1 1 1 1
01-2015 01-2016 01-2017 01-2018 01-2019 01-2020 01-2021

Time

Fig. 3. The optimal hybrid system depends on the location-specific resource time series. The wave (a), wind (b), and solar (c) resource time
series are datasets from Argentine Basin. The current (d) dataset is HYCOM data from Modified Argentine Basin. The current power density
is shown at a depth of 4 m, which is the approximate center plane depth of the turbine. The solid lines are the raw data and the dotted lines
are the cleaned and aligned datasets. Note that the y-axis scale is different for each resource, and the definition of wave power density is not

directly comparable to the other resources.

and sea state and calculated via linear interpolation of
WEC-Sim results for scaled Reference Model 3. Power
(Pwave) 1s calculated as,

ngsz (t)QT;D(t)

Pwave = Uql;ecOWR * B e

- hGr,wave
(6)

where 7, = 0.6 is the electrical conversion efficiency,
B is WEC width, p,, = 1025 kg/ m”® is sea water density,
H(t) is the wave height as a function of time, T),(¢)
is the peak wave period as a function of time, g =
9.81 m/s” is the gravitational constant, and h is the
percentage of the WEC’s rated capacity used to power
“house loads” (assumed to be 10% of the WEC's rated
power). The maximum value of Pyaye is set to G, wave-

Power from the current turbine (Peyrent) is a function
of current speed at center plane depth that mirrors the
wind model where u.(t) is the current velocity at the
turbine center plane depth as a function of time, ¢, uc ¢;
is the current turbine cut-in speed (0.5 m/s), ucrq is
the rated speed (2 m/s), and uc,c, is the cut-out speed
(3 m/s). These values are consistent with reference
models [27]. The turbine rotor is assumed to have 1.5
m clearance with the water surface (0.5 m clearance
with a notional 1 m platform draft). For a cross-flow
turbine with an aspect ratio of unity, the rotor frontal
area is square, with a characteristic dimension

2G .
Rcurrem = ngen (7)
NePwle rq
where 7. = 0.28 is the current turbine current to

wire efficiency (based on engineering judgement of
Cpmaz = 0.4 and 1, = 0.7).

The diesel generator runs for one hour (Pgiesel(t) =
G giesel) if the battery state of charge is insufficient to

satisfy the load for the next hour. The number of hours
the diesel generator runs (Ziunint) and the volume
of fuel consumed between maintenance intervals is
tracked. If the runtime exceeds 250 hours (oil change
required) or the fuel volume consumed exceeds 800 L,
then this is considered unachievable without additional
vessel intervention [18].

The battery is a lithium iron-phosphate (LFP) chem-
istry. The storage capacity decreases over time due
to calendar aging and cyclic loading. Therefore the
capacity of both batteries (one for the active buoy
and one for the spare) must be tracked to calculate
degradation using Xu et al.’s model [21] for battery
degradation under irregular cycling. The battery that
begins the mission on shore does not have a cyclic
charge profile for the first two years, so the capacity
fading is calculated with only calendar degradation
over that time.

The ability of the power system to satisfy the load re-
quirements of the instrumentation and UUV charging
is assessed by “persistence” which is defined as,

SiL L(t) = Le(t)

Qsim = N 8
where L is the time series of load supplied to the
instrumentation and vehicle charging system, L. is the
desired load time series, and N is the number of hours
in the mission life. If asim > 0.99 then the power system
is considered sufficient for the load profile and a viable
case.

C. Objective Function: Aggregate Capacity

The optimization target for this preliminary analysis
is minimum power system aggregate capacity. In this
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approach, we assume that a larger system is less de-
sirable, and therefore calculate a “penalty” associated
with the capacity of each generator and battery for
each point in the design space. The sum of these
penalties, including spares and replacements, is the
aggregate capacity. The point with the lowest aggregate
capacity that satisfies the persistence requirements is
the “optimal” system. The penalty associated with one
buoy’s power system, Jsystem, 1S given as

szstem = Jpv+Jwt+Jd+Jlfp+Jwec+JCt (9)

where J,, is the photovoltaic (PV) module penalty, J,
is the wind turbine penalty, J; is the diesel generator
penalty, Jif, is the lithium-iron-phosphate (LFP) bat-
tery penalty, Jye. is WEC penalty, and J.; is the cur-
rent turbine penalty. The operations concept requires
two platforms, so the aggregate capacity is twice the
penalty of a single power system plus the penalty of
any additional batteries needed to replace a depleted
battery prior to end of the deployment. Therefore, the
aggregate capacity is defined as

Jtotal =2x szstem + lep X Jlfp' (10)

where N, is the number of additional battery mod-
ules required during the mission.

Component penalties are defined as the rated power
of the generator, or maximum capacity of the battery
weighted by an equivalence factor. The component
penalties used in the model are shown in Table I. The
factor applied to the battery is based on the mass of
LFP batteries and an aluminum enclosure. The factor
applied to all the generators is based on the unit mass
of a wind turbine. The choice of a constant factor
on all generators simplifies the optimization space,
while maintaining a physical relationship between the
generator and battery penalties. Additionally, defining
the optimization target this way allows for analysis
of resource compatibility, absent other differences be-
tween the generation sources, and the theoretical limits
to benefits of hybridization.

The 80 kg/kW constant for wind turbine mass in-
cludes the unit mass (mass/rated power) of the turbine
(AIR 403 turbine [28], [29]) and the unit mass of the
tower (Schedule 40 Aluminum pipe [28]). The AIR 403
design uses a guyed tower which is not feasible for
this application. Therefore 4x the pipe mass is used to
account for the truss structure of the tower, albeit with
high uncertainty.

The specific energy of the lithium-iron-phosphate
(LEP) battery is approximately 105 Wh/kg [30]. The
battery enclosure mass is calculated using a non-
negative linear regression of volume vs. rated storage
capacity for 13 LFP batteries. The surface area of a cube
that encloses the battery volume and an assumption
of 1.27 cm (0.5 inch) aluminum plate (35 kg/mz) [31]
yields the associated enclosure mass. A limitation is
that the library of LFP batteries are all < 1 kWh
capacity, so the extrapolation to larger capacities is
uncertain.

If the optimization algorithm finds multiple systems
that satisfy the persistence requirement and have the
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same aggregate capacity then the algorithm checks
each of those systems to find those with the minimum
total generation capacity (i.e., sum of individual gener-
ator capacities). If there are multiple systems that have
the same minimum aggregate capacity and minimum
total generation capacity, then the model determines
that there are multiple, equivalent representations of
an optimal system.

D. Optimization Methods

For optimization, the design space consists of a six-
dimensional matrix defined by the rated capacities for
each generation source (G,) and initial battery storage
capacity (S,,). The maximum rated capacity for any
generation source is set at 8 kW, the minimum capacity
is 0 kW (i.e., the model can opt not to include a genera-
tion source), and the battery capacity is between 1 and
500 kWh. The battery minimum is set to 1 kWh because
energy storage is always required to smooth resource
intermittencies for the renewable power sources. The
maximum grid size is increased if the minimum ag-
gregate capacity system definition is at a corner of the
defined design space (minimum/maximum G, or S,,).

The optimization model must search the design
space for the system with the lowest aggregate capac-
ity that meets the load persistence requirement. The
simplest option is to calculate aggregate capacity and
persistence for all possible combinations of storage ca-
pacity and generator sizes, then identify the minimum.
While this approach was employed for single-resource
optimization in [18], [19], if the design space grid
is well-resolved (e.g., 500 points in each dimension),
the hybrid model would require 1.5x10'® evaluations
of the time domain simulation — which is compu-
tationally prohibitive. Therefore, multiple alternative
optimization algorithms were developed and tested.
The three algorithms were implemented in MATLAB
and executed on one node (40 CPUs and 363 GB of
memory) of UW’s high-performance computing cluster
(Klone-Hyak).

The first is referred to as “telescoping refinement”
(Figure 4 (a)). Telescoping refinement increases the
resolution of the design space around the minimum
aggregate capacity point from the previous iteration.
The first iteration discretizes the design space into nine
points for each dimension, evaluates the time domain
simulation on the coarse grid, and identifies the min-
imum aggregate capacity point. Then the grid bound-
aries are adjusted to one point away from the mini-
mum in each dimension and this “zoomed-in” space
is discretized with nine points in each dimension. This
process is repeated until the minimum-aggregate ca-
pacity configuration between iterations has converged
to a tolerance of 1% for aggregate capacity, as well
as storage capacity and generator capacities. If the
telescoping refinement algorithm does not converge,
then the optimization ends after 5 iterations (final
generation capacity resolution of 0.002 kW).

The second optimization algorithm is referred to
as “persistence band” (Figure 4 (b)). Persistence band
optimization refines the design space in the region
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TABLE I
COMPONENT PENALTY CALCULATIONS

Component Penalty Reference

Equation

Generator AIR 403 turbine [28], [29]

Jg = 80 [kg/kW] x G,

LFP Battery Pack LFP specific energy [30]

Battery Enclosure 13 - LFP battery volumes
Battery System ~

Jifpp = Sm/0.105 [kWh/ke]
Jifp.e =6 x (0.002 [m®] 4 0.0012 [m®/kW] x S)?/3 x 35.24 [kg/m?]
Jigp = Jifpp + Jifpe

surrounding the 6D-surface of 99% persistence. This
optimization method relies on the knowledge that
the minimum-aggregate capacity configuration will lie
on the 6D-surface of 99% persistence (since further
aggregate capacity reduction would fail to satisfy the
persistence requirement). The first iteration is identi-
cal to telescoping refinement. Once this coarse design
space is populated, the points in the space with persis-
tence values near the target value of 99% (e.g., 97.5%
to 99.5%) define the region of interest. During each
subsequent iteration, the grid discretization is doubled,
but only points with persistence within in the region
of interest are retained. This process is repeated for 5
iterations (final generation capacity resolution of 0.06
kW).

As discussed in Section IV, neither algorithm
achieves entirely satisfactory results. The telescop-
ing algorithm has limited accuracy when the regions
of minimum aggregate capacity are non-continuous
and/or non-monotonic, and the persistence algorithm
has grid discretization and runtime limitations. There-
fore, these were combined into a third algorithm re-
ferred to as “persistence with multi-telescoping”. For
the first three iterations, the design space is refined
using the persistence algorithm. For the fourth and
fifth iterations, where further refinement with the per-
sistence algorithm becomes computationally intensive,
all points that have a aggregate capacity similar to
the minimum aggregate capacity define the points of
interest. At every point of interest, additional points
in each dimension are added to the design space in
the region defined by one point away in each dimen-
sion from the point of interest (i.e., a telescoping grid
is applied to each point of interest). This algorithm
completes after 5 iterations (final generation capacity
resolution of 0.065 kW). The upper and lower bounds
of the points that are in the region of interest for the
persistence iterations, the upper and lower bounds of
the points of interest for the telescoping iterations, and
the number of points applied in each telescoping grid
can be adjusted. The choice of these parameters affects
the final grid resolution, and the portions of the design
space that are discretized to the final resolution. There-
fore, these input parameters affect the identification of
“optimal” hybrid systems.

III. RESULTS

Since the mission design and load case are signif-
icantly different than those in Dillon et al. [18], the
hybrid results cannot be directly compared to prior
single-resource results. Therefore, we begin by pre-
senting contextual results for single-resource design
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Fig. 4. The telescoping refinement optimization algorithm (a) finds
the minimum aggregate capacity point in the first grid, then redefines
the grid boundaries to be one point away from that minimum. The
persistence band optimization algorithm (b) identifies the points in
the region of interest (yellow points), and finds the points near that
band in the next iteration’s grid (pink points). While these figures
show the optimization in two dimensions, the actual optimization
occurs in up to six dimensions.

spaces consisting of one generation source and storage.
Unlike the hybrid optimization algorithms, the single-
resource cases involve calculating aggregate capacity
at every point on a 500x500 grid (generation x storage)
and identifying the system with the lowest aggregate
capacity that satisfies the persistence threshold. Table
II shows the minimum aggregate capacity system def-
inition, persistence, and aggregate capacity for each
single-resource space. Depending on the resource, op-
timal G, varies from 2.3 to 15 kW and S,,, varies from
18 to 217 kWh. This variation reflects differences in
resource power density and consistency at the location.
The smallest single-resource system uses wind gener-
ation, Jiora = 759. This system is the benchmark for
hybrid optimization, since that algorithm can choose a
single-resource system if it is optimal. We note that no
solution is found for the diesel generator case because
the diesel generator is poorly matched to this mission
due to the prescribed fuel volume consumption and
runtime limits.

To decrease the computational time required for this
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TABLE II
SINGLE-RESOURCE OPTIMIZATION PARAMETERS AND RESULTS

TABLE III
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HYBRID OPTIMIZATION PARAMETERS AND RESULTS

Optimization Parameters

Algorithm Comprehensive (500 x 500 grid)
Grid Discretization 0.016 kW, 0.998 kWh
Results

Case Gr [kKW]  Sm [KWh]  asim [%]  Jiotal
Solar-only 6.6 22 99 1529
Wind-only 2.3 18 99 759
Wave-only 3.3 26 99 1085
Current-only  15.0° 217 99 6769
Diesel-only N/A N/A N/A N/A

@ The minimum current capacity that satisfied the persistence
threshold is at the edge of the original design space (8 kW
maximum capacity), so the design space was expanded to
15 kW. The capacity for the actual case is slightly < 15 kW.

preliminary analysis, the largest optimization space
analyzed is five-dimensional (four generation sources
and storage). This was completed by forcing the size
of the generation source excluded from the analysis
to always be zero. Two hybrid cases are considered.
The first is a solar-wind-wave-diesel-battery system
(no current turbine). This design space contains the
three co-located renewable sources at Argentine Basin.
The second case is a solar-wind-wave-current-battery
system (no diesel generator), representing a system
powered solely by renewable sources. This design
space uses the current data from the “Modified Ar-
gentine Basin” location. Optimal capacity combinations
are identified within these design spaces using “persis-
tence with multi-telescoping” algorithm. Optimization
parameters and results are presented in Table III. Both
design spaces contain systems with a smaller aggregate
capacity than the smallest single-resource system. The
range of generator sizes shown for the case without
diesel is a consequence of multiple optimal aggregate
capacity systems found for that case. For both systems,
the battery size is smaller than for the single-resource
cases and the individual generators are also lower
capacity. This is a consequence of the mix of generation
capacity able to access differing resource availability at
this location.

Having identified capacity-optimal single-resource
and hybrid generation scenarios, we now consider
the time-domain behavior of these systems, which
underpins the optimization process. Figure 5 shows the
system behavior for the single-resource system with
the smallest aggregate capacity (wind-battery system).
The average power discarded for this case is 0.7 kW.
In contrast, the optimal hybrid system excluding the
current turbine has an average power discarded of
0.6 kW, and the optimal hybrid system excluding the
diesel generator shown in Figure 7 has an average
power discarded of 0.5 kW. Figure 6 shows the system
behavior for the hybrid optimal system excluding the
current turbine. While the diesel generator was ineffec-
tive for the single-resource optimization, in this hybrid

Optimization Parameters

Algorithm

Persistence with Multi-Telescoping

Grid Discretization

0.07 kW, 4.04 kWh

Persistence Band

0.975 < asim < 0.995

Telescoping Points

0.97 x Jtotal,min < Jtotal < 1.03 x Jtotal,min

Results
No Current  No Diesel
GT,diesel 0.08 kW N/A
G, current N/A 0.08 - 0.24 kW
G, solar 0.75 kW 0.75 kW
G, wind 1.24 kW 0.96 - 1.21 kW
Gr,wave 0.68 kW 0.59 - 0.84 kW
Sm 9.02 kWh 9.02 kWh
Asim 99.2% 99 - 99.02%
Trotal 643 630
s 18
mi ﬂr MW—WWVWWYWW "
0 |
e o
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Fig. 5. Time series of battery state of charge (a), generated power (b),
power discarded (c), and supplied load (d) for the optimal single -
resource system. Only the first year of the mission life is shown. The
power discarded (c) shows the generation by the system in excess
of load requirements and storage capacity. The load time series (d)
generally follows the commanded load (see Figure 2), except for
cases when the battery state of charge is too low and the supplied
load drops to zero.

case, a small (0.08 kW) diesel generator is optimal. The
diesel generator only turns on during minimums in the
renewable resources when the battery state of charge
is too low to meet the commanded load. Significant
generation, in excess of load requirements and storage
capacity, is discarded (Figure 6f). The power system
size must be sufficient to meet the UUV recharge load
during limited resource availability, which results in
excess power generation when the UUV is not charging
and/or when the resource availability is more than
sufficient.

When diesel generation is excluded from the hybrid
optimization, there are 16 equivalent, optimal power
systems with the same objective function value and
same total generation capacity. The time series for one
of these systems is shown in Figure 7. The seasonal
trends in solar irradiance and ocean current speed are
complementary at this location so when the power
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Fig. 6. Time series of battery state of charge (a), generated power (b-
e), power discarded (f), and supplied load (g) for the optimal hybrid
system with no current turbine. Only the first year of the mission
life is shown. The power generated by the PV panels, WEC, and
wind turbine are functions of resource availability, but are limited
to the generator rated power. The power discarded (f) shows the
generation by the system in excess of load requirements and storage
capacity. The load time series (g) generally follows the commanded
load (see Figure 2), except for cases when the battery state of charge
is too low and the supplied load drops to zero.
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Fig. 7. Time series of battery state of charge (a), generated power
(b-e), power discarded (f), and supplied load (g) for one of the
16 optimal hybrid systems with no diesel generator. Time series
representation of system performance as for Figure 6

output of the solar panel decreases in the summer,
the power output of the current turbine increases.
This allows for smaller total generation capacity and
a smaller aggregate capacity (Jiota) than when current
turbine is excluded in favor of diesel generation. The
capacities of the generators vary between each of the 16
optimal power systems defined for the hybrid system
excluding the diesel generator. The system definition
for each of the 16 optimal combinations are shown in
Figure 8. As previously discussed, when the optimiza-
tion algorithm finds multiple points with the minimum
aggregate capacity, it checks each power system’s total
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Fig. 8. The 16 optimal points in the hybrid design space excluding
the diesel generator. The free parameters of the design space are
the four generator capacities (a-d), and battery max capacity (f). Total
generation capacity for each system is shown in (e). Additionally, the
corresponding aggregate capacity (g) and persistence (h) are shown
for each point. The x-axis value represents a case index, and the
values of the free parameters, total generation and aggregate capacity
are the corresponding values for that case. Note that the axes limits
are different for each generator.

generation capacity and only keeps points with the
minimum total generation capacity (i.e., all 16 optimal
points have the same total generation capacity and,
by definition, all the optimal systems also have the
same battery maximum capacity). However, the mix of
hybrid generation varies between each optimal system,
and the persistence value deviates slightly from the
threshold value (99%) due to design space resolution.
All systems employ the same solar capacity but the
mix of wind turbine, current turbine and WEC rated
capacity vary. The range of rated capacities for the
current turbine are much lower than those for the WEC
and wind turbine, which is a result of the inconsistency
of the current resource at this location.

Representing the entire design space for the single-
resource optimization can be achieved with a surface
plot of aggregate capacity at each point in the design
space. However, for hybrid design spaces, visualiza-
tion is less straightforward. Each point in the design
space has a unique case index that corresponds to a
unique set of values for each free parameter, aggregate
capacity, and persistence. Plotting the values of free
parameters and aggregate capacity at each index can
be thought of as an “unwrapped” 5D optimization
space. Visualizations of the points in the hybrid design
spaces that satisfy the persistence requirement and are
near the minimum aggregate capacity points are shown
in Figures 9 and 10. The battery maximum capacity
for systems near the optimal points for both hybrid
optimizations are in the range of 9 to 30 kWh. Points
with larger battery maximum capacities were tested,
but resulted in larger aggregate capacity. Points with
smaller battery maximum capacities resulted in insuf-
ficient persistence values. The total generation capacity
near the optimal points are similar for the two hybrid
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Fig. 9. Representation of the hybrid design space excluding the
current turbine. Each case index (x-axis) corresponds to a unique
point in the design space. Each point is defined by the value of
each free parameter: generator rated capacities (b-e) and battery
maximum capacity (g). Black x-markers correspond to a zero -
capacity generator for that resource and case index. The sum of
generator rated capacities is the total generation capacity at each
index (f). To show how the power system definition changes across
the space, the grid points where the power system satisfied the
persistence requirement (asim > 99%) are sorted by increasing
aggregate capacity (a). While the algorithm tested over 10 points
for this optimization, only the first 6000 points are shown to resolve
behavior near the minimum aggregate capacity point (case index 1).

optimization spaces (2 to 4 kW) (Figures 9f and 10f).
The range of individual generator capacities in the sys-
tems shows how the distribution of the total generation
can vary, yet satisfy the persistence requirement. In
addition, combinations with similar objective function
cost do not always include all possible generation
sources.

IV. DISCUSSION

The hybrid optimization results presented were gen-
erated using the “persistence with multi-telescoping”
algorithm. Similar optimizations were attempted using
solely the telescoping refinement or persistence band
algorithms. The telescoping refinement is prone to
“zooming-in” on local minimums based on the low-
est aggregate capacity points resolved in the coarsest
design space. If the minimum in a coarse space is
not close to the global minimum, then the telescop-
ing refinement algorithm will never search near the
global minimum. The persistence band algorithm is
less likely to find local minimums, but the number of
points tested by this algorithm is orders of magnitude
larger than the number tested by telescoping, which
increases runtime per iteration. Additionally, because
the grid discretization is only doubled in each iteration,
more iterations are required to reach a sufficiently fine

Case Index

Fig. 10. Representation of the hybrid design space excluding the
diesel generator as for Figure 9.

grid discretization. Because of this, the run time for
a persistence-only algorithm is infeasible, even with
high-performance computing resources. Because of this
the “persistence with multi-telescoping” algorithm was
developed to use the benefits of each algorithm, while
potentially avoiding their limitations. The persistence
algorithm run-time is only infeasible for iterations > 4
(when the iteration time becomes infeasible is specific
to the optimization space). Therefore, only running
the persistence algorithm three times is computation-
ally feasible. Following this, the telescoping algorithm
quickly refines the space around multiple candidate
cases for lowest aggregate capacity. As described in
Section II-D, this algorithm’s behavior is subject to the
input parameters (number of points in each telescoping
grid, definition of the persistence band, and definition
of the points of interest for the telescoping iterations).
Multiple versions of this algorithm were tested with
varying definitions of these input parameters, and the
final values were based on a balance of computational
speed with result consistency and accuracy. For this
optimization problem, the results are particularly sen-
sitive to the definition of the persistence band, and
narrowing the band definition can cause the algorithm
to solve to a significantly larger “minimum” aggregate
capacity. Sensitivity studies with varying input values
are required for validation of results.

V. CONCLUSIONS AND FUTURE WORK

Despite the optimization difficulty, the results from
this preliminary analysis show that the renewable
resources are well matched and there is a benefit
to hybridization for an ocean observation system in
Argentine Basin. The results also show that a purely
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renewable energy system can satisfy the instrumenta-
tion and UUV recharge load with a smaller aggregate
capacity than the hybrid system with a diesel gener-
ator. However, the definition of an “optimal” system
is dependent on the optimization target. Minimum
aggregate capacity used in this analysis does not take
into account that each generator’s unit mass is differ-
ent, or differences in the unit economic cost of each
power system component. Future work will focus on
expanding the model to optimize for lowest system
economic cost. This requires parametric models for the
platform and mooring as prior work has shown that
these costs are significant [18]. Based on our experience
with this preliminary analysis, we expect that changing
the optimization target will increase the design space
complexity and increase the difficulty of identifying
global minimum values. Therefore, economic optimiza-
tion targets may require more sophisticated algorithms.

DATA AVAILABILITY

The hybrid optimization code is available at
https:/ / github.com/smp52-uw /OO-Hybrid.
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