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Nonlinear WEC modeling using Sparse
Identification of Nonlinear Dynamics (SINDy)

Brittany Lydon, Brian Polagye, Michael Motley, and Steve Brunton

Abstract—Modeling oscillating surge wave energy con-
verter (OSWEC) systems is particularly challenging in
realistic sea states where nonlinear WEC dynamics are com-
mon due to complex fluid-structure interaction, breaking
waves, and other phenomena. Computationally efficient
linear models can be inaccurate in energetic seas, while
higher-fidelity numerical models are too computationally
expensive for operational use, such as real-time state esti-
mation and optimal control. To bridge this gap in modeling
methods, we use Sparse Identification of Nonlinear Dy-
namics (SINDy) to build parsimonious nonlinear reduced-
order models (ROMs) that describe OSWEC behavior in
response to large-amplitude regular waves. Here, SINDy
uses high-fidelity CFD data of nonlinear kinematic OS-
WEC behavior to identify ordinary differential equations
(ODEs) that describe the time-evolution of measurement
variables. We not only are able to develop reduced-order
models that accurately describe both transient and steady-
state system behavior, but we are able to gain valuable
information on the underlying dynamics of the system.
We find dominant cubic terms of the ROMs, indicative
of higher-order nonlinearities in the system dynamics that
can not be captured with purely linear techniques. These
findings provide insight into modeling highly nonlinear
WEC dynamics in response to energetic seas and present
a framework for applying similar analysis to lab- or field-
scale experiments.

Index Terms—wave energy, nonlinear dynamics, data-
driven modeling, oscillating surge WEC

I. INTRODUCTION

ONE of the most promising wave energy converter
(WEC) technologies is the oscillating surge wave

energy converter (OSWEC) [1] due to its ability to
absorb power over a wide range of wave frequen-
cies [2]. OSWECs, shown in the first panel of Fig. 1,
are flap-type devices that primarily harness the surge
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motion of ocean waves, which causes a buoyant flap
to oscillate in pitch about a bottom hinge [3]. These
devices are particularly well suited for shallow ocean
environments, which intensify the surge motion of
wave orbitals and directional consistency due to shoal-
ing [4]. They are also attractive for applications such as
nearshore desalination, as the mechanical pitching mo-
tion can be directly translated to a pressure differential
that drives a reverse osmosis process [5].

Although OSWECs operate in a single degree of
freedom, the dynamics and resulting kinematics are
difficult to describe in realistic sea states. This is partly
because diffraction is one of the dominant forces that
drives OSWEC dynamics, making common assump-
tions such as small-body approximations invalid for
these systems [6]. The dynamics are also influenced
by drag and viscous forces, resulting in complex non-
linear fluid-structure interaction that can not be fully
described by linear potential flow theory, which can
lead to errors in modeling and predicting energy ab-
sorption [7]. Because of these complexities, common
linear design and modeling practices are often not
suitable for OSWECs [2]. This motivated a significant
body of work on developing high-fidelity models us-
ing computational fluid dynamics (CFD) [8]–[10] and
smoothed particle hydrodynamics (SPH) [8], [11]–[16]
to more accurately predict nonlinear OSWEC behavior.
However, these models can take hours of clock time to
simulate a single oscillation period of WEC behavior,
making them unsuitable for real-time state estimation
and optimal control schemes [17]. This motivates mod-
eling techniques for OSWECs that are accurate enough
to capture nonlinear OSWEC behavior in response
to energetic seas, fast enough to be used in a real-
time control scheme, such as model predictive control
(MPC) [18], and can give insight on what is driving the
nonlinear behavior in these systems.

One possible solution is using Sparse Identification
of Nonlinear Dynamics (SINDy) [19] to build nonlinear
reduced-order models (ROMs) that describe OSWEC
behavior in response to large-amplitude regular waves.
SINDy is an equation-free, data-driven algorithm that
identifies dominant nonlinear functions present in sys-
tem state dynamics using a library of nonlinear func-
tions created from time series measurement data. The
result is an ordinary differential equation (ODE) in
time that can be solved from an initial condition to
model and predict time behavior of the states. SINDy
is parsimonious, meaning it uses a sparsity-promoting
hyperparameter to find the the minimum number of
model terms necessary to capture dominant dynamics.
Because of this, ROMS discovered by SINDy are in-
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terpretable and generalizable that are not overfit to the
data. Using the discovered ROMs and integrating in
time, not only can SINDy provide time series models
and future state predictions of OSWEC dynamics, it
can also give insights into which variables are critical
in describing the underlying nonlinear dynamics of the
state. SINDy has been widely used in various scien-
tific applications, including reduced-order modeling of
fluid flows [20], [21], modeling complex aerodynamics
off of structures [22] and oscillating foils [23], and
modeling chemical reaction dynamics to identify the
network’s underlying mechanisms [24], but, to our
knowledge, has not previously been used to model
wave energy converters.

In this study, we use SINDy to describe the nonlin-
ear dynamics of a lab-scale OSWEC in a wave tank
subjected to large-amplitude regular waves. Our goal
is to find a parsimonious ROM of OSWEC kinematics
that accurately describes its nonlinear behavior and
provides insight on the mechanisms leading to the
nonlinear behavior. The remainder of the paper is laid
out as follows: Section II describes the mathematical
formulation of the SINDy algorithm, Section III de-
scribes the methods used for this study including data
generation, processing, and evaluation, and Section IV
describes the resulting ROM for angular acceleration
and assesses how well SINDy can capture the nonlin-
ear behavior observed in OSWEC dynamics.

II. BACKGROUND

A. Sparse Identification of Nonlinear Dynamics (SINDy)

In this section, we outline a basic derivation of the
SINDy algorithm and refer the reader to [19] for a
full derivation and sample code. To begin, consider
a generic set of equations that describes a dynamical
system:

d

dt
x(t) = f(x, t), (1)

where x(t) ∈ Rn is a state vector of n state variables as
a function of time t, and f is a (potentially nonlinear)
function that represents the dynamics dictating the
time behavior of the system. For many dynamical
systems, the function f is sparse in the basis of potential
functions that can be used to describe its dynamics [19].
The main idea of SINDy is to exploit this sparsity and
determine the minimum terms in f to describe x using
sparse regression. A visual schematic of the algorithm
is shown in Fig. 1.

SINDy takes in snapshot data from each state vari-
able, xk, and creates a data matrix, X , whose columns
represent each state. For this study, we are interested
in modeling the kinematics of the OSWEC system,
namely, angular acceleration as a function of velocity
and position: θ̈ = f(θ, θ̇), where θ̈ is the modelled
variable and θ and θ̇ are the state variables. Because
there are two state variables, the data matrix consists
of two column vectors:

X =

 | |
θ θ̇
| |

 ∈ Rm×2, (2)

where each data vector contains m time steps. From
this data matrix, SINDy generates a library of candi-
date functions, Λ(X):

Λ(X) =

 | | | |
1 XP1 XP2 ... XPN

| | | |

 ∈ Rm×p, (3)

where XPq represents a polynomial factor of order q of
data matrix X and N is the highest order polynomial
considered. For example, for the data matrix described
in Equation 2 with two states, XP2 = [θ2 θθ̇ θ̇

2
]. It

is possible to include a wider range of candidate func-
tions, such as trigonometric or hyperbolic functions,
but because both the modelled and state variables are
oscillatory, we expect the dynamics are likely to be
well described using polynomial functions of the state
variables, similar to other nonlinear oscillatory systems
such as a Duffing or Van der Pol oscillator [25]. In other
words, we do not include trigonometric functions of
our state variables in the function library because the
states are inherently periodic, so applying a trigono-
metric function to the states would be akin to taking a
sine function of a sine wave.

Using the library of nonlinear functions, Λ(X), we
can set up a regression problem to find a ROM for θ̈:

θ̈ = Λ(X)ξ, (4)

where we aim to find function weights ξ ∈ Rp×1 that
result in the fewest number of active terms in Λ(X) to
accurately describe, θ̈. The variable we are interested
in modeling, in this case θ̈, can either be measured
similarly to the state variables, or calculated numeri-
cally from the state variables. We use the least absolute
shrinkage and selection operator (LASSO) [26], [27] to
find ξ:

argmin
ξ

∣∣∣∣∣∣θ̈ −Λ(X)ξ
∣∣∣∣∣∣
2
+ λ ||ξ||1 , (5)

where λ is a hyperparameter that enforces sparsity by
penalizing the sum of the terms in ξ. λ is tunable and
can be chosen such that parsimony is achieved, i.e. the
dynamics are accurately represented, but not overfit.
Once ξ is known, we have a symbolic equation that
describes the reduced order model (ROM) of θ̈(t):

θ̈(t) = Λ(x)ξ, (6)

where Λ(x) is a library of symbolic functions com-
posed of symbolic variables θ(t) and θ̇(t), not data.
This form of output is advantageous for multiple rea-
sons. First, angular acceleration can be calculated from
instantaneous measurements of angular position and
velocity. Second, the model can be applied to different
time sections of interest with a similar level of accuracy
as the section of data it was trained on. Third, based
on the active functions in Equation 6, we can identify
drivers of nonlinear behavior in dynamics, θ̈(t), by the
nonzero terms in ξ and, from this, learn more about the
underlying dynamics of the system. Finally, having a
closed-form expression for the modelled variable can
be critical for important WEC applications such as
future-state prediction or optimal control, where a fast
and accurate system model is needed.



LYDON et al.: NONLINEAR WEC MODELING USING SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 383–3

TABLE I
RELEVANT VALUES FOR OPENFOAM

SIMULATION SETUP.

Description Symbol Value

flap mass mf 10.77 kg
flap inertia I 0.1750 kg · m2

flap width w 0.65 m
flap height h 0.341 m
flap thickness a 0.1 m
beach dimensions b1 4.82 m

b2 1.30 m
b3 2.40 m
b4 3.70 m
b5 6.20 m
c1 0.150 m
c2 0.356 m

hinge height c3 0.476 m
water depth d 0.71 m
wave period T 2.0625 s
wave height H 0.05 m

III. METHODS

An overview of the methods we used for this study
are outlined in Fig. 1. There are three major steps, each
outlined in detail in the following subsections: generate
data, perform SINDy, and evaluate model output.

A. Generate and process data
We begin by generating the data that will be input

into the SINDy model (Block I in Fig. 1). We generate
this data using an OpenFOAM v2012 model of a lab-
scale OSWEC described in [28]. A schematic of the
simulation is given in Fig. 2. The model is based on
experiments run at Queen’s University in Belfast [10].
The wave tank is 4.58 meters wide and 20 meters long
with a progressive sloped bathymetry with two flat sec-
tions connected by linear ramps. There is a wavemaker
that generates regular, linear waves with a period of
2.0625 seconds and a height of 0.05 meters. Although
Fig. 2 shows the OSWEC composed of a base and flap,
the OpenFOAM simulation only models the flap with a
constraint that it oscillates at a hinge oriented with the
cross-dimension of the tank and located 0.476 m from
the bottom of the tank. The OSWEC flap is 0.65 meters
wide and 0.34 meters tall. Relevant system parameters
are summarized in Table III-A and we refer the reader
to [28] for further simulation details on wave tank,
OSWEC, and wave parameters.

OpenFOAM is a finite volume fluid solver that
can be combined with a rigid body solver to model
complex fluid-structure interaction. Because we aim
to model nonlinear OSWEC behavior, we want the
OSWEC to experience large rotations. However, this
can complicate the meshing process in the numerical
simulation, as large rotations can cause the mesh to
degrade and become skewed [10], [29]. To overcome
this, this OpenFOAM model uses an overset grid,
where the simulation domain contained two meshes: a
background mesh of the wave tank and a overset body-
fitted mesh around the flap [30]. Using this overset

grid method, neither mesh is deformed throughout
the simulation. Instead, the overset mesh moves with
the rigid flap and flow field values are interpolated
from the boundary of the background and overset
mesh. There have been several recent studies have
utilized this meshing method to model numerical wave
tanks [31] and WEC hydrodynamics [32]–[37]. Further
details on meshing and simulation details are provided
in [28].

Using the OpenFOAM simulation, we extract flap
position, θ, and angular velocity, θ̇, as inputs to the
SINDy algorithm. The flap experiences large displace-
ments of about ±48◦. Time series of OSWEC kinematics
from the OpenFOAM model are shown in Fig. 3. We
cut the time series into a six second window (almost
three oscillation periods) to use as training data for
SINDy. We then arrange the data into the data matrix
X , which is used to generate the library of functions,
Λ, shown in the schematic in Fig. 1. For this case, data
matrix X has two columns, the first column is the
time series data for angular position, θ, and the second
is the time series data for angular velocity, θ̇. Next,
we calculate θ̈ by applying a fourth-order numerical
differentiation scheme to θ̇. The calculated angular
acceleration, θ̈ is shown in Fig. 3 and will serve as our
modeled variable on the left hand side of Equation 4.

B. Run SINDy

Now that we have our data matrices, we can input
them to the SINDy algorithm to get a ROM for angular
acceleration, θ̈ (Block II in Fig. 1). In other words, we
aim to find a function f such that:

θ̈ = f(θ, θ̇). (7)

We emphasize that this is non-trivial because, while
θ̈ is given by differentiation of θ̇, this function can
estimate θ̈ from instantaneous observations. We run the
SINDy algorithm over a range of the two user-defined
parameters: maximum polynomial order, N , and the
sparsity-promoting hyperparameter, λ. Although an
iterative process, the cost of running the SINDy al-
gorithm over a range of parameters is significantly
less than that of high-fidelity modeling, making it still
computationally efficient.

C. Evaluate ROM output

Finally, to assess how well the ROM describes the
nonlinear dynamics (Block III in Fig. 1), we evaluate the
error between the OpenFOAM output and the ROM
produced by SINDy for θ̈. We calculate the error as:

error = ||θ̈SINDy − θ̈||2. (8)

We look at the error value over the tested range of
model parameters to determine what values result in
a parsimonious, yet accurate, model (i.e., the best-fit for
the nonlinear dynamics using the fewest active terms
in Λ(X)).
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Fig. 1. SINDy data analysis workflow. We begin by generating nonlinear kinematic data from OpenFOAM (Block I). After preprocessing
the data, we input it into the SINDy algorithm (Block II), which first creates a library of nonlinear functions of order N , Λ(X), from data
X . SINDy then uses a sparse regression algorithm to solve θ̈ = Λ(X)ξ for coefficients, ξ. The sparsity-promoting parameter λ is tuned to
ensure ξ has the minimum number of terms to accurately describe dynamics θ̈. After choosing N and λ, we compare the ROM to original
data (Block III) to assess if the dominant dynamics were adequately captured.

Fig. 2. Schematic of the OpenFOAM simulation setup [28], based
on experiments in [10]. The incident wave input is shown in blue,
with measured system states in green and dimensions in purple. The
values of the dimensions are give in Table III-A.

D. Nonlinear kinematics

The upper two panels in Fig. 3 show the kinematic
state variables used to train the model – angular
position θ and angular velocity θ̇. These kinematics
demonstrate complex, nonlinear behavior that can not
be captured by linear potential flow models. Linear
models often assume that the flap oscillates as a perfect
sinusoid with an oscillation frequency equal to that of
the incident wave, such that: θlinear(t) = Asin(ωt + ϕ),
where ω = 2π/T , and T is the incident wave pe-
riod [38]–[40]. We compare the OpenFOAM output
against this linear representation, with parameters A
and ϕ determined from the state initial condition and
maximum amplitude of the OpenFOAM model, re-
spectively. Similarly, we calculate the derivatives of the
linear representation to compare to θ̇ and θ̈. Com-
paring these two curves highlights the nonlinearities
present in the state variables. First, the OpenFOAM
kinematics oscillate at a slightly different frequency
than the incident wave. In addition, the shape of the
oscillations for the kinematics vary from a simple sinu-
soid. The shape of θ (a) closely resembles a sinusoid,
with some asymmetry about the peak, but in taking
the derivatives the nonlinearity is much more evident,

Fig. 3. Output from OpenFOAM (black) of angular position (top),
θ, velocity (middle), θ̇, and acceleration (bottom), θ̈. Gray curves
represent purely linear, sinusoidal behavior with the same starting
conditions and an oscillation period equal to the wave period,
as is often the kinematic behavior of linear modeling techniques.
The OpenFOAM output exhibits nonlinear behavior including time-
varying oscillation frequency and evident cubic nonlinearity in θ̇. θ
and θ̇ are the state data we input to the SINDy algorithm to get an
output for a ROM of θ̈ = f(θ, θ̇).

and it is clear that higher order functions are required
to describe the behavior than a simple sinusoid. For
example, there is evident cubic behavior in the oscilla-
tions for angular velocity (b). And finally, the peaks in
amplitude of the OpenFOAM angular velocity (b) and
acceleration (c) exceed that of the linear approximation.
It is important to model these peaks well to ensure
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Fig. 4. (Top) Error as a function of maximum polynomial order, N ,
for λ = 0, i.e., including all terms, no sparsity enforced. Error drops
significantly when considering cubic nonlinearity, with little accuracy
gained when considering higher orders. This behavior also occurs for
all other λ values. We choose N = 3 based on this drastic decrease
in error. (Bottom) Error as a function of number of terms included in
ROM for N = 3. Number of terms decrease as λ increases and we
further enforce sparsity. Error increases drastically when the number
of terms drops below five, therefore we choose λ = 1.7 to obtain a
parsimonious model that is accurate but not overfit.

structural integrity and power conversion efficiency for
the device.

IV. RESULTS AND DISCUSSION

Fig. 4 summarizes the results of iterating the SINDy
algorithm over a range of maximum polynomial or-
desr, N , and sparsity-promoting hyperparameters, λ.
To choose the maximum polynomial order, N , we
look at error as a function of N for λ = 0 case (no
sparsity enforced), shown in Fig. 4. Although we are
only showing the case for λ = 0, there is a similar
pattern for all λ values tested. There is a drastic drop
in error for N > 2, which implies that the cubic terms
are vital to describing system dynamics. Since error
does not significantly decrease for N > 3, we choose
N = 3 as indicative of the lowest polynomial order
that gives an accurate representation of the dynamics.
After choosing N , we choose hyperparameter λ by
considering error as a function of number of terms in
the reduced order model for θ̈ (Fig. 4). As λ increases,
the number of terms decreases as sparsity is more
heavily weighted in Equation 5. By choosing the num-
ber of terms to include, we are implicitly describing
a λ parameter. Although error increases as number
of terms decreases (as expected), until the number of
terms decreases below five terms the error is relatively
stable. This means that five terms are the minimum

Fig. 5. Magnitude of function weights, ξ, for SINDy model of
angular acceleration, θ̈ with optimal conditions N = 3 and λ = 1.7
(black circles) and function weights of a purely sinusoidal, linear
dynamics, θ̈ = −ω2θ (gray markers). Although both models have
a large magnitude coefficient for θ, ξ has other nonzero coefficients
for nonlinear terms, particularly cubic functions.

number of terms necessary to describe the dynamics,
so we choose λ = 1.7 as our hyperparameter. Note that
even though including more terms decreases the error
in the ROM, including all of those terms means we are
likely overfitting the data and failing to identify the
most parsimonious model.

After choosing the maximum polynomial order, N ,
and sparsity-promoting hyperparameter, λ, we have an
expression for angular acceleration with five remaining
terms:

θ̈ = −8.7θ + 1.8θ̇ + 4.3θ3 − 8.2θ2θ̇ − 2.4θθ̇
2
. (9)

To visualize the relative importance of each term in
Equation 9, Fig. 5 shows the magnitude of function
weights ξ for each candidate function in Λ(X). It is
important to note that if this was a purely linear system
and θ could be represented by a sinusoid (such that
θ̈ = −ω2θ), the only nonzero component in ξ would
be for the θ function. Although the magnitude of the
θ function coefficient is the largest of ξ, and of similar
value of what it would be for the sinusoidal oscillation
case, we see that there are several other active terms
required for accurate modeling that deviate from the
standard sinusoidal case. For example, both θ̇ and θ
are needed to accurately describe θ̈, not just θ. Also,
there are several higher order terms contributing to the
dynamics of θ̈. In particular, the cubic terms contribute
significantly to the ROM, including cross terms θ2θ̇

and θθ̇
2
. In addition, all the quadratic terms are zeroed

out, further emphasizing that there are dominant cubic
nonlinearities represented in the dynamics that are
necessary for accurate reconstruction. Note that even
though only the odd orders of the library are activated,
the active terms do not follow a traditional sine expan-
sion of the state variables, which are already oscillatory
in nature, due to the cross terms in Equation 9. This
type of analysis is beneficial for multiple reasons. First,
it informs the tools required for accurate modeling of
OSWEC behavior in other systems. For example, if
we were attempting to model a different OSWEC in
response to a different incident wave, we would now
know that for large rotations we will likely need to
consider higher order terms up to the third order in
our analysis. Without that knowledge, we would likely
miss important dynamics that couldn’t be captured
with traditional linear methods. Second, the character-
istics and order of the nonlinearity identified by SINDy
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Fig. 6. OpenFOAM (black) and SINDy (blue) model of θ̈ in the
training region.

can give important information on the nature of the
system and how to control it. For example, it has been
shown other oscillators with higher-order nonlineari-
ties have a shift in eigenvalues of the system, which
in term shift the oscillation frequency and amplitude,
(both of which are evident in Fig. 3) [25]. This has
important implications in resonant behavior as well as
system control.

Fig. 6 compares the ROM output from SINDy for θ̈
to the output from OpenFOAM in the training region.
The SINDy ROM describes the dynamics almost per-
fectly, which is what we expect since the model was
trained on this data. There is slight underestimation
on the positive peaks, but the nonlinear oscillation
shape and frequency are well captured, unlike the
case of sinusoidal motion (Fig. 3). This suggests that
the ROM models the significant nonlinearities well in
the training region. This is a promising result, but to
confirm that Equation 9 describes the true dynamics of
the full system, we need to look beyond the training
region to see if the model can still accurately model
data it was not trained on.

Fig. 7 compares the OpenFOAM and SINDy outputs
for θ̈ over the full time series of OpenFOAM output.
The time series includes three regions: the training
region, a transient region before the training region
where the wavemaker is ramping up, and a steady-
state region after the training region. To be confident
our model represents the true dynamics of the system,
it is critical that it can accurately describe the system
behavior in all three regions. Although we only trained
the SINDy model on a small section of steady-state
data, it is able to capture the dynamics well in all
three regions. It is particularly promising that SINDy
can describe the transient region because even though
there are other reduced order modeling techniques
that may be able to capture the higher order periodic
behavior observed in the training region (such as a
Fourier analysis or dynamic mode decomposition with
time delays), this transient behavior would not be ac-
curately represented unless it was included in the data.
Although we may not be interested in this exact type
of transient behavior, this shows that SINDy is able to
capture transient kinematics, even when being trained
on only steady-state data. Based on the accuracy with

which the SINDy model describes the the full time
series, we can be confident that this ROM is physically
meaningful.

Now that we are confident that Equation 9 accurately
describes the angular acceleration of the system, θ̈, we
can integrate Equation 9 to evaluate the time evolution
of state variables θ̇ and θ. Fig. 8 shows the results
of this integration from the same initial flap initial
position and velocity conditions as OpenFOAM. There
is an evident transient and steady-state region and
the shape of the oscillations is similar between the
OpenFOAM output and SINDy model, but there is
a clear phase difference between the two. This can
be a common result from integrating SINDy models,
and we hypothesize that this is a consequence of a
mismatch of excitations of the system. Since Equation
9 has no external excitation term, the nonzero initial
conditions act as excitation to the system, while the
OpenFOAM model is driven externally from the inci-
dent waves. Therefore, if the initial conditions of the
OpenFOAM model do not excite the SINDy model in
the same way as the external wave forcing, there will
be a mismatch in phase as the transient region varies
between the two models. We plan to investigate this
further in future work. However, besides the evident
phase shift, the two models both have a transient re-
gion, and steady state region, and oscillate with similar
amplitude, structure, and frequency.

To more clearly visualize the differences in the in-
tegrated state variables from the SINDy model, Fig.
9 includes a 2.5 second phase shift that aligns the
SINDy integration with the steady-state period. From
this representation, it is clear that the SINDy model
captures the steady-state region for both variables
quite well, both in and outside of the training region.
For the transient region, the SINDy model starts off
modeling the behavior well, but then there is period
of time in which the SINDy model does not match
the OpenFOAM model. This could be due to a nu-
merical artifact from the OpenFOAM model, or some
underlying dynamics that are lost when integrating
the SINDy model, even though angular acceleration is
well-described throughout (Fig. 7).

Finally, Fig. 10 shows angular velocity θ̇ as a func-
tion of angular position, θ – a phase-space diagram
of the state variables. Representing the variables this
way allows us to compare the two models without
comparing the two time series directly. Both models
have a transient region that approaches a stable “limit
cycle”. The shape of the limit cycles for the OpenFOAM
and SINDy models match well. The SINDy model
also models the initial transient behavior well, but,
as was evident in Fig. 9, there is discrepancy in the
two models in the late transient region before the limit
cycle. Again, this may be due to a numerical artifact
or hidden dynamics not well described when inte-
grated the Equation 9. Interestingly, we observe that
the behavior of this system is similar to that of a Hopf
bifurcation [41], with an unstable fixed point at the
center of a stable limit cycle. Because this behavior has
been well studied in other dynamical systems, existing
work in modeling and controlling similar systems may
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Fig. 7. OpenFOAM output (black) and SINDy output (blue) of angular acceleration, θ̈, in the training region (gray) and testing region
(white). The SINDy model captures the dominating nonlinear features of the dynamics throughout both the training and testing region. In
particular, the SINDy model is accurate even in the transient region before the training region, ensuring the model is describing the true
system dynamics.

Fig. 8. OpenFOAM output (black) and integrated SINDy output (blue) of (top) angular velocity, θ̇, and (bottom) angular position, θ. The
training region is shown in gray. The SINDy model captures the dominating nonlinear features of the dynamics, but there is an evident phase
shift between the two time series.

be able to inform further research in modeling and
controlling similar WEC systems.

V. CONCLUSION

In this study, we use a nonlinear data-driven algo-
rithm, SINDy, to generate accurate ROMs of nonlinear
OSWEC kinematics using a limited number of terms.
We used kinematic data from a high-fideltiy CFD sim-
ulation of an OSWEC in response to large amplitude
regular waves, and showed the data to be highly
nonlinear, with time-varying oscillation frequency and
nonlinear oscillation profile. Using SINDy, we devel-
oped an accurate ROM for angular acceleration as a
sum of nonlinear functions built from kinematic data
(i.e., angular position and velocity). This ROM was
not only able to model angular acceleration in the
training data, but also accurately captured early tran-
sient behavior before the training region and steady-
state behavior after. When we numerically integrate
the ROM to obtain time series of angular velocity
and position, there was a notable phase shift between

the data and the integrated SINDy model, as well
as amplitude and frequency deviations in part of the
transient region. Agreement between input kinematics
and integrated quantities is, however, excellent in the
training and steady-state region.

By adjusting the maximum polynomial order in the
model as well as the sparsity-promoting hyperparam-
eter, we were able to ensure we had a parsimonious
model that we could interpret to gain insight into
the underlying nonlinear behavior. We found that to
accurately describe the nonlinearity in the angular ac-
celeration we must include cubic terms, and quadratic
terms did not contribute to the dynamics, suggesting
that future models need to consider terms up to the
third order to be able to describe the dynamics well.
Using this model, we can efficiently and accurately
model and predict nonlinear OSWEC kinematics using
only existing data.

In future work, we plan to build on this preliminary
work in four main ways:

• Expand variable type. Although we used only
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Fig. 9. OpenFOAM output (black) and integrated SINDy output (blue) of (top) angular velocity, θ̇, and (bottom) angular position, θ. The
SINDy time series is time-shifted to better match the phase of the OpenFOAM data. The training region is shown in gray. The two models
are almost identical in the steady-state region, but there is some discrepancy in the transient region before the training data.

Fig. 10. Phase-space diagram of the two state variables: angular
velocity, θ̇, and angular position, θ, for both OpenFOAM (black) and
SINDy model (blue). Both models have a transient region that leads
to a “limit cycle”. The SINDy model captures the initial transient
behavior and the final limit cycle well, but there is discrepancy in
the region between the initial transient and the limit cycle that is
also evident in the time domain representations in Fig. 9.

kinematic OSWEC data in this study, this process
is extendable to other dynamics, such as hydrody-
namic force acting on the flap and torque about the
bottom hinge. In addition to expanding the chosen
modelled variables (the left-hand-side of Equation
4), we will expand the state variables included
in the nonlinear function library to have a wider
range of potential functions. We plan to include
states such as hydrodynamic torque, pressure on
the flap face, etc. This will provide more insight
in the underlying system, as well as model more
relevant variables for control.

• Expand to experimental data. Despite the gen-

erally high-fidelity nature of OpenFOAM, there
will inevitably be aspects of experimental data not
accurately captured in a numerical model, such as
boundary effects and sensor noise. Therefore, we
plan to extend this work to use experimental data
as a SINDy input. This will help to evaluate the
suitability of SINDy for more realistic WECs.

• Compare to canonical systems. There is an exten-
sive body of work modeling and controlling non-
linear oscillatory dynamical systems [25]. Given
the observed similarities to a Hopf bifurcation,
we plan to compare the ROMs of this system to
canonical nonlinear dynamical systems to further
inform dynamics and control. We aim to draw
these connections and leverage prior work in con-
trolling similar nonlinear dynamical systems.

• Apply to model predictive control. Lastly, we
want to apply this work to WEC control. ROMs
from SINDy can be directly used to model pre-
dictive control schemes [18] and we aim to opti-
mize power generation of OSWECs operating in
highly energetic seas, where nonlinear behavior is
expected.

Overall, SINDy appears to be a promising tool to
generate reduced-order models of nonlinear WEC be-
havior and can provide insights into the underlying
dynamics of these complex systems.
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ering governing reactions from concentration data,” The Journal
of chemical physics, vol. 150, no. 2, p. 025101, 2019.

[25] P. B. Kahn and Y. Zarmi, Nonlinear dynamics: exploration through
normal forms. Courier Corporation, 2014.

[26] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 58, no. 1, pp. 267–288, 1996.

[27] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

[28] M. Riddle, “Cfd modeling of an oscillating wave surge con-
verter using the overset grid method,” Master’s thesis, Univer-
sity of Washington, 2022.

[29] A. O. Winter and M. R. Motley, “Development of a fluid-
structure interaction model of an oscillating wave surge con-
verter using openfoam,” in International Conference on Offshore
Mechanics and Arctic Engineering, vol. 84416. American Society
of Mechanical Engineers, 2020, p. V009T09A034.

[30] O. Ltd. (2019) Openfoam: User guide v2112. [On-
line]. Available: https://www.openfoam.com/documentation/
guides/latest/doc/guide-overset.html

[31] H. Chen, L. Qian, Z. Ma, W. Bai, Y. Li, D. Causon, and
C. Mingham, “Application of an overset mesh based numerical
wave tank for modelling realistic free-surface hydrodynamic
problems,” Ocean Engineering, vol. 176, pp. 97–117, 2019.

[32] Z. Lin, H. Chen, L. Qian, Z. Ma, D. Causon, and C. Mingham,
“Simulating focused wave impacts on point absorber wave en-
ergy converters,” Proceedings of the Institution of Civil Engineers-
Engineering and Computational Mechanics, vol. 174, no. 1, pp. 19–
31, 2021.

[33] E. Katsidoniotaki and M. Göteman, “Comparison of dynamic
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