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Abstract—This article presents a wave energy converter 
exploiting the pitch of a floating body moored to the seabed. 
When the floating body tilts under the action of an 
incoming wave, a movable mass, placed inside the hull, 
moves relative to the floating body and actuates an electrical 
generator. Most devices of this type have the drawback that 
the moving mass sequentially accelerates, slows down, 
stops and then repeats this sequence in the opposite 
direction. This generates an irregular instantaneous power 
output. The proposed concept consists of (at least) two 
eccentric bodies having the same mass and revolving at 
opposite speeds around a vertical axis. In this « counter-
rotating » solution, the oscillations of the float result in the 
continuous circular motion of the direct-drive PTO, though 
the global centre of gravity of the eccentric bodies moves 
back-and-forth along the symmetry axis of the device. If the 
eccentric bodies move at constant speed, their global centre 
of gravity moves in a sinusoidal manner along its pathway. 
The present study aims to investigate, through modelling 
and numerical simulations, the influence of the main 
parameters, such as the phase and the PTO mass moment, 
on the performance of a counter-rotating device exposed to 
waves of various heights and various wavelengths. Optimal 
phase and mass moment are determined numerically. The 
resulting output power is close to the theoretical maximum 
power that can be harvested by the floating body. 

Keywords— Numerical simulation, Performance analysis, 
Renewable energy, Rotating-mass converter, Wave energy 
converter.  

I. INTRODUCTION

A. Background of the study
MONGST the many devices that have been designed 
to convert wave energy into electrical energy, various 

machines make use of the pitch and surge of a moored 
floating body [1]. 
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B. Operating principle of the studied device
One way of solving the aforementioned problem is to

replace the longitudinal reciprocating motion of 
conventional devices by two eccentric bodies rotating at 
opposite speeds around a vertical axis [6], (see Fig. 1). 
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Fig. 1.  Implementation principle of a counter-rotating solution. 
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the trajectories of these two parts being respectively 
located above and below the trajectory of eccentric body 2. 
Distributed in such a way on parallel planes, the eccentric 
bodies can rotate continuously in opposite directions 
without colliding with each other, even though their 
centres of gravity (𝐺ଵ and 𝐺ଶ) move along a same circle.  

The angle formed by the half-line 𝐶𝐺ଵ  and the 
longitudinal axis will be denoted 𝜃ଵ , while the angle 
formed by the half-line 𝐶𝐺ଶ and the longitudinal axis will 
be denoted 𝜃ଶ, as illustrated in Fig. 2. 

Throughout the movement, the respective angles of the 
two bodies are opposite (𝜃ଶ=-𝜃ଵ), so that the two eccentric 
bodies rotate symmetrically with respect to the vertical 
plane containing the longitudinal axis. The total centre of 
gravity 𝐺௉்ை  of both bodies moves back and forth along 
the longitudinal axis. Furthermore, it can be noted that if 
the eccentric bodies have a constant rotational speed, the 
total centre of gravity 𝐺௉்ை  exhibits a strictly sinusoidal 
motion. 

When the two half lines 𝐶𝐺ଵ and 𝐶𝐺ଶ are perpendicular 
with the longitudinal axis (𝜃ଵ=-𝜃ଶ=±90°), the total centre of 
gravity 𝐺௉்ை  coincides with the centre 𝐶  of the circle. In 
this particular situation, which we will call "neutral 
position", the mass of the PTO is balanced with respect to 
the centre 𝐶. 

C. Main objective of the study
The purpose of this study is to investigate, through

modelling and numerical simulation, the impact of the 
main parameters, i.e. phase and total mass moment of the 
PTO, on the performance of a counter-rotating device 
subjected to regular waves of different heights and 
wavelengths. 

II. MODELLING OF THE SYSTEM

D. Mechanical description of the system
In the present study, we will consider a terrestrial

reference frame (𝑂, 𝑥଴ሬሬሬሬ⃗ , 𝑦଴ሬሬሬሬ⃗ , 𝑧଴ሬሬሬ⃗ ), in which 𝑧଴ሬሬሬ⃗  points vertically 
upwards and 𝑥଴ሬሬሬሬ⃗  gives the direction of wave propagation, 
and a reference frame (𝐶, 𝑥௖ሬሬሬ⃗ , 𝑦௖ሬሬሬ⃗ , 𝑧௖ሬሬሬ⃗ ) attached to the floating 
body, wherein 𝐶, 𝑥௖ሬሬሬ⃗ , 𝑦௖ሬሬሬ⃗ , 𝑧௖ሬሬሬ⃗  are defined in such a way that 
they coincide with 𝑥଴ሬሬሬሬ⃗ , 𝑦଴ሬሬሬሬ⃗ , 𝑧଴ሬሬሬ⃗  when the device is at rest in its 
neutral position. 

The instantaneous position of the floating body with 
respect to its neutral position at rest is marked by a 
generalized coordinate vector 𝑿 ≝ [𝑥, 𝑦 , 𝑧, 𝛼, 𝛽, 𝛾]் , 
composed of the three translations (surge, sway, heave) 
and the three Euler angles (roll, pitch, yaw). The angular 
position of the two rotating bodies is denoted by the angle 
𝜃௡ , 𝑛 ∈  {1,2}. The total moving mass is denoted 𝑚௉்ை ≝

𝑚ଵ + 𝑚ଶ. 
In the present paper, the oscillating motions of the 

floating body are linearized. We will therefore only 
consider the first order terms with respect to the 
components of the vector 𝑿 in the Taylor series expansion 
of the equations of motion. Besides, the rotating masses in 
the device being capable of performing any number of 
revolutions around their axis of rotation (𝐶, 𝑧௖ሬሬሬ⃗ ), the angular 
variables 𝜃ଵ and 𝜃ଶcannot be described using a finite series 
expansion. 

E. Dynamics of the floating body
After linearization of the floating body motions, the

equation of the dynamics of the six-dimensional floating 
body takes the following form: 

𝑴௕𝑿̈ = 𝑭௕ത→௕ (1)

The matrix 𝑴௕  represents the generalized mass of the 
floating body. The vector 𝑭௕ത→௕  denotes the combined 
external forces acting on the floating body, and results 
from five contributions: 

𝑭௕ത→௕ =  𝑭௥௘௦ + 𝑭௠௢௢ + 𝑭௘௫௖ + 𝑭௥௔ௗ + 𝑭௣௧௢→௕ (2)

1) The term 𝑭௥௘௦ is the hydrostatic restoring force. To the
first order, it can be written:

𝑭௥௘௦ =  − 𝑲௥௘௦𝑿 (3)

with 𝑲௥௘௦ the stiffness matrix depending on the geometry 
of the floating body. 

2) In a first approach, we will assume that the mooring
force can be approximated locally by a stiffness matrix
𝑲௠௢௢ :

𝑭௠௢௢ =  − 𝑲௠௢௢𝑿 (4)

Fig. 2.  Trajectory of the gravity centres in horizontal projection. 

Fig. 3.  Coordinate system. 
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3) The term 𝑭௘௫௖  represents the excitation force exerted
by the incident waves.

4) The motions of the floating body produce radiated
waves that disturb the pressure field, resulting in the
appearance of a radiative force 𝑭௥௔ௗ.

5) The term 𝑭௣௧௢→௕ is the force that the PTO exerts on the
floating body. It is also the sum of the forces exerted
by the two bodies that make up the PTO : 𝑭௣௧௢→௕ =
∑ 𝑭௡→௕௡∈{ଵ,ଶ}

Since the motion of the PTO is nonlinear, it is not 
possible to solve the system directly in the frequency 
domain. We have to calculate all the forces, and in 
particular the hydrodynamic forces 𝑭௘௫௖  and 𝑭௥௔ௗ , in the 
time domain. 

F. Hydrodynamic forces in the time domain
In a first place, we calculated the hydrodynamic

coefficients 𝒇௘௫௖(𝜔) and 𝑲௥௔ௗ(𝜔) in the frequency domain 
using the open source code NEMOH [7]. This 
computational code, developed by the Laboratoire de 
recherche en Hydrodynamique, Énergétique et Environnement 
Atmosphérique (LHEEA) for several years, is based on a 
Boundary Element Method (BEM) which allows for rapid 
testing of various configurations. 

To determine the time-domain forces from the 
frequency-domain coefficients, we used the Marine System 
Simulator [8] developed by the Norwegian University of 
Science and Technology (NTNU), which allows to build a 
dynamical system (6), whose output 𝝁ෝ  provides an 
approximation of the radiative stress component 
associated with the fluid memory effect [9]. The remaining 
radiative stress component comes from 𝑴஺,ஶ, i.e. the limit 
of the added mass matrix when the wave frequency ω 
tends to infinity: 

𝑭௥௔ௗ ≈ −𝑴஺,ஶ𝑿̈ − 𝝁ෝ (5)

𝑿̇௥௔ௗ = 𝑨෡𝑿௥௔ௗ + 𝑩෡𝑿̇

 𝝁ෝ = 𝑪෡𝑿௥௔ௗ + 𝑫෡ 𝑿̇
(6)

In this system, 𝑿௥௔ௗ denotes the state vector that reflects 
the influence of the past on the evolution of the radiative 
stress. The matrices 𝑨෡,𝑩෡ ,𝑪෡,𝑫෡  are identified by Fossen and 
Pérez’s method [9]. 

G. Dynamics of the rotating masses
Writing the motion of a rotating mass as the sum of the

motion of the floating body and a relative motion, and then 
linearizing the motions of the floating body, we obtain the 
following 6-dimensional dynamics equation for each 
rotating mass: 

∀𝑛 ∈ {1,2},  𝑴௡𝑿̈  + 𝜃̈௡𝑱௡ + 𝜃̇௡
ଶ𝑳௡  +  2𝜃̇௡𝑪௡𝑿̇

= 𝑭௚→௡ + 𝑭௕→௡ 
(7)

Equation (7) allows us to determine the binding force 
𝑭௕→௡ as a function of the system variables, and thus allows 
us to calculate the force that the PTO exerts on the floating 
body. In this equation, 𝑴௡ is the generalized inertia matrix 
of a body expressed at point 𝐶, 𝜃̈௡𝑱௡ is the force induced at 
point 𝐶 by the angular acceleration of the body, 𝜃̇௡

ଶ𝑳௡ is the 
centrifugal force at point 𝐶 and 𝑪௡  is the matrix of the 
Coriolis coefficients of the body. The vectors 𝑱௡ , 𝑳௡, 𝑭௚→௡ 
are functions of the angle 𝜃௡ of the body and the rotations 
of the floating body, while the matrices 𝑴௡ and 𝑪௡ depend 
only on the angle 𝜃௡ of the body. 

With respect to the floating body, each rotating mass has 
one degree of freedom, namely rotation about the axis 
(𝐶, 𝑧௖ሬሬሬ⃗ ). The equation of motion according to this degree of 
freedom can be written: 

ℐ௓௖,௡൫γ̈ + 𝜃̈௡൯ + 𝑚௡𝑟௡(𝑦̈ cos 𝜃௡ − 𝑥̈ sin 𝜃௡)

 = 𝑐௡ − 𝑚௡𝑟௡𝑔(𝛽 sin 𝜃௡ + 𝛼 cos 𝜃௡)
 (8)

This equation relates the torque 𝑐௡ exerted by the 
electric generator to the motion of an eccentric body 
through its eccentric moment 𝑚௡𝑟௡, its moment of inertia 
ℐ௓௖,௡ relative to the rotation axis (𝐶, 𝑧௖ሬሬሬ⃗ ), and the acceleration 
of gravity 𝑔. 

H. Canonical equation for the whole device
In the present study, we wish to observe the response of

the system to a given excitation 𝑭௘௫௖(𝑡) and for a given 
trajectory 𝜃௡(𝑡) . In other words, 𝜃ଵ  et 𝜃ଶ  are input 
variables along with 𝑭௘௫௖. Combining (1), (2) and (7), we 
obtain the equation of motion of the floating body 𝑿: 

൭𝑴௕ + ෍ 𝑴௡

௡

൱ 𝑿̈ =  𝑭௥௘௦ + 𝑭௠௢௢ + 𝑭௘௫௖ + 𝑭௥௔ௗ

+ ෍൫𝑭௚→௡ − 𝜃̈௡𝑱௡ − 𝜃̇௡
ଶ𝑳௡ − 2𝜃̇௡𝑪௡𝑿̇൯

௡

(9)

In order to solve the dynamics of the device, we need to 
write the evolution equation of the state vector  𝒀 =

[𝑿, 𝑿̇, 𝑿௥௔ௗ]௧. By expanding the radiative stress in equation 
(9) and recombining the terms, we obtain the following
canonical equation:

𝒀̇

= ൥

𝟎 𝑰଺ 𝟎

−𝑴ିଵ𝑲 −𝑴ିଵ𝑫෡ −𝑴ିଵ𝑪෡

𝟎 𝑩෡ 𝑨෡
൩ 𝒀

+ ൦

𝟎

𝑴ିଵ ൬𝑭௘௫௖ + ෍ ൫𝑭௚→௡ − 𝜃̈௡𝑱௡ − 𝜃̇௡
ଶ𝑳௡ − 2𝜃̇௡𝑪௡𝑿̇൯

௡
൰

𝟎

൪

(10)

where 𝑰଺ denotes the identity matrix of dimension 6x6. 

𝑴 = 𝑴௕ + ෍ 𝑴௡

௡

+ 𝑴஺,ஶ  ;   𝑲 = 𝑲௥௘௦ + 𝑲௠௢௢ (11)
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III. NUMERICAL MODEL AND SIMULATIONS

I. Study protocol
The aim of our simulation work is to study the influence

of different parameters through the example of a floating 
body of elementary geometry. To do so, we solved (10) in 
the time domain with Matlab. Then, we compared the 
results obtained for different values of the PTO phase and 
for different body masses, while the device is subjected to 
different regular waves. 

J. Numerical model of the device

1) Characteristics of the floating body
The floating body of the device under consideration is a

box having the following dimensions: length 𝑙௕  = 45 m, 
width 𝑤௕ = 20 m, draught ℎ௕ = 6.67 m. The dimensions of 
the hull are such that the pitching excitation force reaches 
its maximum for a wave period of 9 s, which typically 
corresponds to the centre of the useful period range for a 
wave energy converter. Since the floating body is 
symmetrical with respect to the plane ( 𝑂, 𝑥଴ሬሬሬሬ⃗ , 𝑧଴ሬሬሬ⃗ ), the 
description of one half of its geometry is sufficient to 
calculate the hydrodynamic coefficients. A half floating 
body is modelled by a mesh consisting of 278 
quadrangular panels, as shown in Fig. 4. 

2) Characteristics of the ballast
We assume that the hull of the floating body is made of

steel and has a constant thickness of 20 mm over its entire 
wetted surface. We take as reference 8000 kg/m3 for the 
density of the steel, which allows us to determine the 
generalized hull mass matrix 𝑴௛ . The sum of the PTO 
mass 𝑚௉்ை  and the hull mass 𝑚௛  is less than the desired 
displacement  𝜌଴𝒱଴ . A ballast of mass 𝑚௟  is required to 
achieve the desired draft: 

𝑚௟ = 𝜌଴𝒱଴ − 𝑚௛ − 𝑚௉்ை (12)

In order to obtain a pitch resonance frequency 𝜔௥ହ  as 
low as possible, the ballast is composed of two cast iron 
blocks of density 5500 kg/m3 which are spaced apart so as 
to maximize the moment of inertia of the floating body 
with respect to the pitch axis (C, 𝑦௖ሬሬሬ⃗ ). 

3) Characteristics of the PTO
The centre 𝐶 of the PTO is located in the centre of the

water plane area. The rotating masses are steel blocks of 
density 8000 kg.m-3. The outer surface of the volume swept 
by the rotating masses passes as close as possible to the 
inner wall of the hull. The eccentric radius 𝑟௡ , i.e. the 
distance between the centre of gravity of a body and the 
centre of the PTO, is fixed at 6.67 m.  

In a first place, we have explored the performance of a 
PTO consisting of two 139-ton rotating masses. 

K. Simulated time response
First, we simulate the response to regular waves of

period 𝑇 = 10 s, height 𝐻 = 2 m, and propagating along the 
direction (O, 𝑥଴ሬሬሬሬ⃗ ).  

In this simulation (Fig. 6), the two bodies of the device 
are animated by rigorously symmetrical movements and 
performed at constant speed to produce a sinusoidal 
displacement of the centre of gravity 𝐺௉்ை  along the 
longitudinal axis: 

൜
𝜃ଵ(𝑡) =  + 𝜔𝑡 +  𝜑௉்ை

𝜃ଶ(𝑡) =  − 𝜔𝑡 −  𝜑௉்ை
 ;    𝜑௉்ை =  𝜑௘௫௖ + Δ𝜑 (13)

The phase of the excitation force is denoted 𝜑௘௫௖, while 
the motion of the PTO has a phase offset Δ𝜑 with respect 
to the excitation force. At the initial instant, the floating 
body is at rest 𝑿̇ = [0,0,0,0,0,0]௧ in its neutral equilibrium 
position 𝑿 = [0,0,0,0,0,0]௧. 

In Fig. 6, we can see that heave and pitch tend to oscillate 
with the same frequency as the waves, but that surge also 
exhibits a low frequency oscillation. A plausible cause for 
the appearance of this oscillation is that the mooring is 
excited during the transient regime following the initial 
state: the frequency of the observed oscillation coincides 
with the surge resonance frequency of the mooring system. 
Such a low frequency is only weakly damped, so that the 
amplitude of the low-frequency motion of the surge does 
not decrease perceptibly over the duration of the 
simulation. The steady state is therefore not fully reached 
at the end of the simulation. 

However, in order to keep the calculation time 
reasonable, we considered that the operating regime of the 
device was sufficiently established from 500 s onwards for 
us to observe the performance of the device. 

Fig. 4.  Mesh of a half floating body. 

Fig. 5.  Mesh of a half floating body. 
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L. Influence of the PTO phase
The PTO phase 𝜑௉்ை  is of crucial importance for the

power capture. To highlight this point, we plot the power 
produced by the device under the same conditions as 
before (𝑇 = 10 s, 𝐻 = 2 m, 𝑚௉்ை  = 278 t), but for different 
values of the phase offset Δ𝜑 with respect to the excitation 
force (see Fig. 7). The simulation covers the time 
interval  [0, 𝑡௙] . To limit the influence of the transient 
regime, we calculate the captured power by dividing the 
energy produced over an interval of the form [𝑡௙ − Δ𝑡, 𝑡௙] 
by the time span  Δ𝑡 . This time span Δ𝑡  is chosen to 
correspond to a multiple of the excitation period 𝑇௘௫௖, this 
multiple being as close as possible to 2/3𝑡௙.  

The power output has a single maximum and a single 
minimum over [-180°,+180°]. When the power output is 
negative, the device loses more energy by radiation than it 
extracts from the incident waves. Furthermore, we note 
that the minimum is more negative than the maximum is 
positive (see Fig. 7). 

We will note Δ𝜑௢௣௧ the optimal value of the phase offset 
Δ𝜑 for a given set of parameters (𝑇,𝐻,𝑚௉்ை). Let us specify 
that the time response illustrated in Fig. 6 corresponds to 
the optimal phase offset for the considered parameter set. 

Fig. 8 presents the evolution of the optimal phase offset 
Δ𝜑௢௣௧ as a function of the period and height of the incident 
wave. 

In Fig. 8, the curves of the optimal phase offset for the 
different wave heights merge. The wave height has 
therefore no influence on Δ𝜑௢௣௧. The same is true for the 
mass of the PTO, which we found during the simulations 
to have no influence on Δ𝜑௢௣௧ (this point will be explained 
analytically in subsection N). 

We conclude that the optimal phase offset Δ𝜑௢௣௧ 
depends only on the incoming wave period 𝑇. 

Fig. 8 shows that the optimal phase offset 𝜑௢௣௧  passes 
through 180° with a steep slope near the pitch resonance 
period 𝑇௥ହ: 

𝑇௥ହ =  2𝜋ඨ
𝑀௖,ହହ + 𝑀஺,ହହ + 2𝑚௟𝑟௟

ଶ + ∑ 𝑀௡,ହହ,௡௧௡

𝐾௥௘௦,ହହ + 𝐾௠௢௢,ହହ

(14)

In the preceding expression, 𝑀௡,ହହ,௡௧ denotes the inertia 
of the PTO with respect to the pitch axis (C, 𝑦௖ሬሬሬ⃗ ), when the 
device is in the neutral position. For the considered device, 
the pitch resonance period 𝑇௥ହ is 9.56 s. 

The 180° value of the optimal phase offset at resonance 
is explained by the fact that the floating body oscillates in 
phase with the pitch excitation force [10], as the inertial 
forces and the restoring forces acting on the floating body 
neutralize each other. Thus, the inclination of the floating 
body has a phase delay of 90° with respect to the 
inclination of the water surface.  

Fig. 6.  Oscillations of the float. 

Fig.  7.  Power output as a function of the PTO phase offset. 

Fig. 8. Optimal phase offset as a function of the wave period. 
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Under these conditions, the optimal phase offset Δ𝜑௢௣௧ 
for the PTO is 180°, as illustrated in Figure 9. 

For excitation periods greater than 𝑇௥ହ , the restoring 
forces is much greater than the inertial forces, so that the 
pitch of the floating body tends to be in phase with the 
local inclination of the water surface. In this case, the 
optimal phase offset Δ𝜑௢௣௧  tends towards 270°, which 
corresponds to the location on the circle of axis (𝐶, 𝑧௖ሬሬሬ⃗ ) 
where the downward slope is the strongest. 

Conversely, when the excitation period is less than 𝑇௥ହ, 
the inertial forces are dominant, and the pitch of the 
floating body lags behind the local tilt of the water. In this 
context, the position that maximises the slope in which the 
PTO mass is located corresponds to a phase offset between 
+90° and 180°.

In order to make the best use of the available power, the
PTO has to be driven such as to verify  Δ𝜑 = Δ𝜑௢௣௧(𝑇) .
In all the following simulations, we will therefore set
Δ𝜑௢௣௧(𝑇) as the value for the phase offset Δ𝜑, and observe
the influence of parameters other than the phase on the
performance of the device.

M. Analysis of operation at optimal phase offset
The behaviour of the device operating at optimal phase

offset has been simulated for different wave frequencies 
and different wave heights. In each simulation performed, 
the fast Fourier transform of the floating body motions 
exhibits a distinctive peak at the frequency of the incident 
waves. The surge presents a secondary peak at mooring 
resonance frequency. 

4) Response amplitude operators

In the pitch RAO (Fig. 12), it can be seen that the yellow 
curve, which corresponds to a wave height of 5.0 meters, 
reaches its maximum at the resonance period 𝑇௥ହ, which is 
consistent with the expected result. However, the red 
curve and even more so the blue curve exhibits two peaks 
on either side of the resonance and a trough centred at 
resonance. 

5) Absorbed power
The behaviour we have just observed in the pitch curves

(Fig. 12) is also clearly apparent on the power curves 
shown in Fig. 13. 

As in subsection L, the absorbed power is the mean of 
the power converted by the PTO over an integral number 
of cycles, once the oscillation regime is fully established. 

Fig. 13 suggests that, at the pitch resonance frequency, 
the studied device is best suited for certain wave heights. 
To compare the device performance for different wave 
heights, a normalization is required.  

Fig. 9.  Schematic view of the device pitching sequence as a 
function of the wave period. 

Fig. 10.  Surge response amplitude operator. 

Fig. 11.  Heave response amplitude operator. 

Fig. 12.  Pitch response amplitude operator. 

Fig. 13.  Power absorbed by the device. 
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To this purpose, we divide the captured power by the 
theoretical maximum power for a symmetrical floating 
body oscillating in pitch: 

𝑃௧௛௘ =
𝜆

𝜋
𝐽௜ (15)

where λ/π is the maximum capture width for a pitching 
body and 𝐽௜  is the incident power per unit front width [10], 
given by: 

𝐽௜ =
𝜌𝑔ଶ

32𝜋
𝑇𝐻ଶ (16)

N. Analytical explanations

6) Simplified pitching model
The behavior of the device near the resonance

frequency, which may seem surprising in a first place, 
becomes clearer if we look at the analytical structure of the 
pitching dynamics. To this end, we temporarily adopt two 
simplifying hypotheses. Firstly, we assume that the 
coupling with the other oscillation modes has a negligible 
effect on the dynamics of the pitch near 𝑇௥ହ. Secondly, we 
assume that the nonlinear inertial forces introduced by the 
PTO are negligible compared with the inertial forces 
involved in the pitch near 𝑇௥ହ. In the time domain, the pitch 
equation is therefore written: 

𝑀ହହ𝛽̈ = −𝐾ହହ𝛽 − 𝐾௥௔ௗ,ହହ ∗ 𝛽̇ +
𝐻

2
𝑓௘௫௖,ହ + 𝑈 (17)

where 𝑈 denotes the weight moment of the PTO about the 
pitch axis: 

𝑈 = ෍ 𝑚௡𝑟௡𝑔 cos 𝜃௡
௡

 (18)

The two bodies of the PTO move symmetrically, so that 
𝑈 can be expressed as a function of 𝜃ଵ only: 

𝑈 = 2𝑚ଵ𝑟ଵ𝑔 cos 𝜃ଵ (19)

Equation (17) is linear with respect to both input 
variables, 𝑈  and 𝛽 . It is therefore possible to study the 
system in the frequency domain.  

We introduce the notation 𝐹௘,ହ(𝜔)  for the Fourier 
transform of the excitation force, the notation 𝑈(𝜔) for the 
transform of the PTO's weight, the notation 𝑀′ହହ(𝜔) for 
the total inertia with respect to the pitch axis, added mass 
included, and the notation 𝑅ହହ(𝜔)  for the radiative 
damping diagonal coefficient for the pitch axis: 

𝛽(𝜔) =
𝐹௘,ହ(𝜔) + 𝑈(𝜔)

𝐾ହହ − 𝜔ଶ𝑀′ହହ(𝜔) + 𝑗𝜔𝑅ହହ(𝜔)
(20)

where 𝐹௘,ହ(𝜔) is defined as follows: 

𝐹௘,ହ(𝜔) =
𝐻

2
𝑓௘௫௖,ହ(𝜔) (21)

In (20), the pitch dynamics takes the form of a damped 
oscillator subjected to external disturbances.  

7) Analytical power capture formula
A method for calculating the power captured by an

oscillating system is given by Falnes in [10]. We will only 
recall the main steps of this method.  

The power conceded to the device by the wave 
excitation force is: 

𝑃௘(𝜔) = 1
2ൗ ℜ൫ 𝑗𝜔 𝛽(𝜔) 𝐹௘,ହ

∗ (𝜔) ൯ (22)

where ℜ denotes the real part operator. 
The power radiated by the device due to its pitch motion 

is determined from the radiation damping coefficient: 

𝑃௥(𝜔) = 1
2ൗ 𝜔ଶ𝑅ହହ(𝜔)|𝛽(𝜔)|ଶ (23)

The power captured by the pitch is the difference 
between the power extracted from the incident wave and 
the power lost by radiation: 

𝑃(𝜔) = 𝑃௘(𝜔) − 𝑃௥(𝜔) (24)

The power can be written in the following form, in 
which, for readability reasons, the “(𝜔)” are implied: 

𝑃 = 𝜔
𝑄ହହℑ൫𝑈𝐹௘,ହ

∗ ൯ −  𝜔𝑅ହହ ቀ|𝑈|ଶ + ℜ൫𝑈𝐹௘,ହ
∗ ൯ቁ

2|𝑄ହହ − 𝑗𝜔𝑅ହହ|ଶ
(25)

where ℑ denotes the imaginary part operator and 𝑄ହହ is: 

𝑄ହହ = 𝜔ଶ𝑀′ହହ − 𝐾ହହ (26)

8) Relationship to the phase and the amplitude of the rotary
motion

To study the performance of our device, it is convenient 
to express the captured power as a function of the PTO 
phase offset Δ𝜑 and the PTO weighing moment.  

Fig. 14.  Ratio of the absorbed power to the theoretical maximum. 
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To this end, we introduce the amplitude parameter 𝜎: 

𝜎 =
|𝑈|

ห𝐹௘,ହห
(27)

After a few lines of calculation, (25) simplifies to: 

𝑃 = 𝜔ห𝐹௘,ହห
ଶ

𝑄ହହ𝜎 sin(Δ𝜑) +  𝜔𝑅ହହ ൬
1
4

− ቚ
1
2

+ 𝜎𝑒௝୼ఝቚ
ଶ

൰

2|𝑄ହହ − 𝑗𝜔𝑅ହହ|ଶ

(28)

From (28), it is possible to determine a theoretical value 
for the phase and amplitude optimum of the motion of the 
eccentric bodies. 

9) Theoretical optimal phase offset
Based on the present model, we search for the optimal

theoretical phase offset, denoted as Δ𝜑௧௛௘. 
First, we look for local extrema of the captured power 

by taking the partial derivate of (28) with respect to the 
phase offset Δ𝜑. Cancellation of the power partial derivate 
leads to the following relationship: 

𝑠𝑖𝑛(𝛥𝜑௧௛௘) = −
𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ

𝑐𝑜𝑠(𝛥𝜑௧௛௘) (29)

To proceed with the resolution, we will show that 
𝑐𝑜𝑠(𝛥𝜑௧௛௘) is non-zero. To this end, we take the square of 
(29) and add 𝑐𝑜𝑠ଶ(𝛥𝜑௧௛௘) to both members of the equation:

1 = ൥1 + ቆ
𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ

ቇ

ଶ

൩ 𝑐𝑜𝑠ଶ(𝛥𝜑௧௛௘) (30)

From (30), it is obvious that 𝑐𝑜𝑠(𝛥𝜑௧௛௘)  is not zero. 
Therefore, we can divide both members of (29) 
by 𝑐𝑜𝑠(𝛥𝜑௧௛௘), to express the tangent: 

𝑡𝑎𝑛(𝛥𝜑௧௛௘) = −
𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ

(31)

Equation (31) defines the theoretical optimum Δ𝜑௧௛௘: 

∃𝑘 ∈ ℤ, 𝛥𝜑௧௛௘ = 𝑘𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 ቆ
𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ

ቇ (32)

Without loss of generality, we can restrict our study to 
phase angles within  ]−90°, +270°] . We will denote 𝛥𝜑௔ 
and 𝛥𝜑௕ the two extrema within this range.  

𝛥𝜑௔ = − 𝑎𝑟𝑐𝑡𝑎𝑛 ቆ
𝜔ଶ𝑀ᇱ

ହହ − 𝐾ହହ

𝜔𝑅ହହ

ቇ   ;     𝛥𝜑௕ = 𝛥𝜑௔ + 𝜋  (33) 

To determine which phase offset is optimal, we compare 
the captured power for 𝛥𝜑௔ and 𝛥𝜑௕: 

Δ𝑃 = 𝑃(𝛥𝜑௔) − 𝑃(𝛥𝜑௕) (34)

We use (28), (29) and (33) to develop (34) and express 
the power difference Δ𝑃 as a function of cos(𝛥𝜑௔): 

Δ𝑃 = −𝜔ห𝐹௘,ହห
ଶ

𝜎

𝑄ହହ
ଶ

𝜔𝑅ହହ
+ 𝜔𝑅ହହ

|𝑄ହହ − 𝑗𝜔𝑅ହହ|ଶ
cos(𝛥𝜑௔) (35)

Equation (35) shows that the sign of the power 
difference Δ𝑃  is the opposite of the sign of  cos(𝛥𝜑௔). 
According to its definition, 𝛥𝜑௔  is within ]−90°, +90°[ , 
which means that cos(𝛥𝜑௔) is positive. 

We conclude that 𝛥𝑃  is negative. Therefore 𝛥𝜑௕  is the 
theoretical optimal phase offset 𝛥𝜑௧௛௘: 

𝛥𝜑௧௛௘ = 𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 ቆ
𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ

ቇ (36)

We note that the theoretical optimal phase offset is 
independent from the wave height 𝐻, and depends only 
on the circular frequency 𝜔, which is consistent with our 
previous observations (see subsection L). 

In Fig. 15, we superimposed the optimal phase offsets 
obtained respectively by simulation (Fig. 8) and 
analytically (see 36) from our simplified model. 

Fig. 15 shows a reasonable agreement between the two 
curves. 

10) Theoretical optimal amplitude ratio
A theoretical optimum for the amplitude ratio is

denoted 𝜎௧௛௘. Using (28), we look for the points where the 
partial derivative of the power with respect to the 
amplitude ratio 𝜎 is zero. After a few lines of calculations, 
we obtain the following relationship: 

𝜎௧௛௘ =  
𝜔ଶ𝑀′ହହ − 𝐾ହହ

2𝜔𝑅ହହ

𝑠𝑖𝑛(𝛥𝜑) −
1

2
𝑐𝑜𝑠(𝛥𝜑) (37)

We can see that 𝜎௧௛௘ is a function of the phase offset 𝛥𝜑. 
To investigate further, we focus on 𝜎௧௛௘  when 𝛥𝜑  is 
optimal.  

Fig. 15.  Comparison between simulated and analytical phase 
offset optima over the period range. 
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Using (30) and the negativity of cos(𝛥𝜑௧௛௘), due to (36), 
we have: 

cos(𝛥𝜑𝑡ℎ𝑒) = −
1

ඨ1 + ൬
𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ
൰

ଶ (38)

We now use (29) and (38) to express sin(𝛥𝜑௧௛௘): 

sin(𝛥𝜑𝑡ℎ𝑒) =

𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ

ඨ1 + ൬
𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ
൰

ଶ (39)

Using (38) and (39) in (37) leads to: 

𝜎௧௛௘ =  
1

2
ඨ1 + ቆ

𝜔ଶ𝑀′ହହ − 𝐾ହହ

𝜔𝑅ହହ

ቇ

ଶ

(40) 

O. Special case study

Case 1: 𝜔 ≪  𝜔௥ହ

We observe that if the circular frequency 𝜔 is small 
with respect to the resonance frequency 𝜔௥ହ, the dynamics 
is dominated by the stiffness 𝐾ହହ: 

𝑃~
𝜔ห𝐹௘,ହห

ଶ

2𝐾ହହ

𝜎 sin(−Δ𝜑) (41)

In this case, the optimal phase offset Δ𝜑௧௛௘ tends 
towards 270°, which is consistent with Fig. 8. When 𝜔 is 
small enough, the amplitude ratio 𝜎 gains to be as large as 
possible in order to maximize power extraction 𝑃. To 
operate efficiently on long waves, the device therefore 
gains from having as large an eccentric moment as 
possible. 

Case 2: 𝜔 ≈  𝜔௥ହ 
When the circular frequency is close to the resonance 

frequency 𝜔௥ହ, the radiation coefficient 𝑅ହହ dominates the 
pitch dynamics: 

𝑃~ 
ห𝐹௘,ହห

ଶ

2𝑅ହହ

ቆ
1

4
− ฬ

1

2
+ 𝜎𝑒௝୼ఝฬ

ଶ

ቇ (42)

In this case, the optimal phase offset is 180°. Rewriting 
equation (42) for the optimal phase offsetΔ𝜑 =  Δ𝜑௧௛௘ =

180°, we obtain: 

𝑃~
ห𝐹௘,ହห

ଶ

2𝑅ହହ

 𝜎(1 − 𝜎) (43)

Our simplified analytical model thus predicts that the 
optimal amplitude ratio at resonance is: 

𝜎௧௛௘(ω୰ହ) = ½ (44)

At resonance, there is a relationship between the 
optimum mass of the PTO and the height 𝐻 of the wave : 

𝑚௉்ை,௧௛௘ = 2𝑚ଵ,௢௣௧ =
𝐻𝑓௘௫௖,ହ(𝜔௥ହ)

4𝑟ଵ𝑔
(45)

We observe that the power produced near the resonance 
frequency is very sensitive to the amplitude parameter 𝜎, 
especially when the mass of the PTO exceeds the optimum 
mass. According to (43), our simplified analytical model 
predicts that a mass twice as large as the optimal mass is 
enough to cancel out the power capture of the device at 
resonance. 

As an illustration, (43) predicts that, for a wave height 𝐻 
= 1 m, the mass 𝑚௉்ை = 278 t is too high to produce power. 
This prediction is in agreement with the simulation results: 
one can refer to the blue curve of Fig. 13 for confirmation. 

Case 3: 𝜔 >  𝜔௥ହ 
In this case, the pitch inertia 𝑀′ହହ  is dominant. The 

optimal phase is between +90° and +180°, and the optimal 
value for the PTO mass is larger than at resonance. 

11) Summary of the lessons learned from the simple model
In the power formula given by equation (28), the

denominator evolves favourably as the resonance is 
approached, which is illustrated by the yellow curve in 
Fig. 13 and Fig. 14. In the immediate vicinity of resonance, 
the numerator is dominated by the damping term. This 
term evolves unfavourably if the magnitude of the mass 
moment is not adapted to the excitation force. This 
situation is illustrated by the blue curve, which shows 
power drop centred at resonance. The ability to adapt the 
mass moment of the PTO would therefore be useful. 

P. Influence of the PTO mass at resonance frequency
To complete our study, we simulated the effect of the

PTO mass on the performance of the device at resonance 
as a function of incident wave height, as shown in Fig. 16. 

Fig. 16.  Power output for different masses at resonance. 
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We then compared the observed optimal mass for each 
height with the theoretical mass from equation (45), as 
shown in Fig. 17. 

Fig. 17 confirms the good agreement between the 
simulation results of the nonlinear model (10) and the 
predictions of the simplified model for pitching (17). 

IV. CONCLUSION AND PROSPECTS

Q. Summary of the study
In the present study, the performance of a wave energy

conversion device with counter-rotating masses has been 
explored. In a first step, a dynamic model that is linear 
with respect to the motion of the floating body and 
nonlinear with respect to the PTO motion was developed. 
In the time domain, this model translates into a system of 
nonlinear differential equations that was solved 
numerically. In a second step, the time response of the 
device was simulated for different monochromatic waves. 
In a third step, it was shown that there is an optimal phase 
and amplitude for the mass moment of the PTO. 

At frequencies far from resonance, the mass moment is 
best kept as large as possible. However, close to resonance, 
a mass moment that is too large is unfavourable for power 
collection. A simple analytical model limited to the pitch 
dynamics validated these results. 

R. Research perspectives
In addition to the work presented above, it would be

useful to estimate the average power produced over one 
year of operation for one or more reference sites. To this 
end, the present study could be extended by exploring the 
performance of the device in response to different 
irregular waves. 

Given the magnitude of the motions of the floating 
body, it would be interesting to study the effect of terms of 
order higher than one on the performance of the device. It 
could also be interesting to couple the non-linear PTO with 
a fully non-linear hydrodynamic model in time-domain. 
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