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A hybrid linear potential flow - machine
learning model for enhanced prediction of
WEC performance

Claes Eskilsson, Sepideh Pashami, Anders Holst and Johannes Palm

Abstract—Linear potential flow (LPF) models remain the
tools-of-the trade in marine and ocean engineering despite
their well-known assumptions of small amplitude waves
and motions. As of now, nonlinear simulation tools are still
too computationally demanding to be used in the entire
design loop, especially when it comes to the evaluation
of numerous irregular sea states. In this paper we aim to
enhance the performance of the LPF models by introducing
a hybrid LPF-ML (machine learning) approach, based on
identification of nonlinear force corrections. The corrections
are defined as the difference in hydrodynamic force (vis-
cous and pressure-based) between high-fidelity CFD and
LPF models. Using prescribed chirp motions with different
amplitudes, we train a long short-term memory (LSTM)
network to predict the corrections. The LSTM network is
then linked to the MoodyMarine LPF model to provide the
nonlinear correction force at every time-step, based on the
dynamic state of the body and the corresponding forces
from the LPF model. The method is illustrated for the case
of a heaving sphere in decay, regular and irregular waves —
including passive control. The hybrid LPF-model is shown
to give significant improvements compared to the baseline
LPF model, even though the training is quite generic.

Index Terms—Linear potential flow, machine learning,
recurrent neural network, floating bodies, wave energy

I. INTRODUCTION

AVE to wire models (W2W) rely on linear po-

tential flow (LPF) assumptions for computing
the hydrodynamic response of wave energy converters
(WECs). The W2W models are then used to make
predictions of motion, loads and power production,
underpinning the estimated levelized cost of energy
(LCoE). A restraint of the W2W models is that they
must be computationally efficient as many sea states
must be computed within a reasonable time. This re-
straint effectively rules out higher-fidelity CFD models
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and is the main reason LPF models are used regardless
of the restrictions of their underlying assumptions of
small wave and response amplitudes. Thus there is still
a great interest in enhancing the performance of LPF
models.

Machine learning (ML) is getting more and more
attention in the ocean energy sector, although data-
driven approaches have been used for some time
within system identification and control of WECs [1]-
[4].

The system identification approach is well described
in [1], [2]. The papers detail how training data is
to be constructed, and compare linear and nonlinear
identification systems. Nonlinear autoregressive with
exogenous input (NARX) models and artificial neural
networks (ANN) were used to construct maps of force-
to-body-positions. It was shown that while the ANN
model always showed the best performance during the
training phase, it performed worse than NARX during
the validation phase.

Many optimal control strategies require forecasting
of wave excitation forces acting on WECs to obtain
optimal power output. A recent study [4] employed
three different ANNs to forecast the excitation force,
concluding that all three models gave satisfactory re-
sults with only minor differences between them. This
provides a promising indication: that the quality of
the forecast is insensitive to the choice of ANN. Also,
[3] developed an ANN model to forecast the wave
excitation force, in 3 degrees of freedom. The model
performed well, with a goodness of fit larger than 92 %
in all of the 12 sea states that were tested.

While the approach in this paper draws heavily on
the work on system identification and excitation force
forecasting, the aim here is not to achieve a mapping
for control. Instead, we use ML to alleviate some of
the shortcomings of the LPF models, aiming to achieve
an augmented hybrid LPF-ML model that is to be
used as any LPF model today. The hybrid LPF-ML
approach has the potential to be a computationally
efficient alternative to nonlinear Froude-Krylov force
implementations, as well as a more versatile and accu-
rate alternative to standard Morison type drag. Other
sources of error, such as the linearised forces from
wave radiation and diffraction of the wave field are
implicitly compensated in the formulation. ML models
provide general mapping functions, which makes them
very suitable for representing such nonlinear correc-
tion terms while keeping the computational overhead
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within acceptable limits.

Recently the authors [5] presented the first results of
the hybrid LPF-ML model. By comparing the forces ob-
tained from hierarchical numerical modelling (RANS,
Euler, fully nonlinear potential flow and LPF) act-
ing on a floating body, several nonlinear correction
terms were defined. Recurrent neural networks (RNNs)
were trained to predict the nonlinear corrections. The
nonlinear correction forces were then included in the
LPF model. The idea behind the subdivision of the
correction terms was to link each correction to specific
assumptions and limitations in the model theory. It
also provided a correct and intuitive way to map
results between model and prototype scale, as the
viscous corrections are predominantly Reynolds-scaled
and the pressure terms follow the Froude scaling law.
Unfortunately, the hierarchical training approach was
shown to be highly sensitive to numerical errors, given
that these networks were very hard to train.

In the present work we thus examine a simpler
approach: to compute a single step correction force
using just RANS and LPF modelling. Additionally,
we employ a more generic input signal (up-chirp) as
suggested in [1], [2] and examine the performance of
the hybrid LPF-ML model for a succession of more
advanced test cases: decay test, regular wave case,
irregular wave and irregular wave with a negative
spring set-up.

II. NUMERICAL MODELS

Two models of different fidelity are tested in this pa-
per: a high-fidelity, viscous Reynolds Averaged Navier-
Stokes (RANS) model; and a model based on the
standard linear potential flow (LPF) equations.

The RANS model uses the volume of fluid method
(VOF-RANS) to compute the two-phase air-water in-
terface. The model uses the interFoam solver, being
a part of the open-source finite volume framework
OpenFOAM [6], [7]. OpenFOAM is based on a cell-
centered 2nd order finite volume method on unstruc-
tured polyhedral cells.

For the LPF simulations we use the MoodyMarine
model [8], [9]. MoodyMarine solves the Cummins
equation using pre-computed hydrodynamic coeffi-
cients.

A. Wave-body interaction

In CFD the resulting pressure force F, and viscous
force F, acting on the body are given by directly inte-
grating the total pressure p and the viscous shear stress
T over the body surface. For a body with total area
A= Zfi“l A;, discretized into N, cells, the equation of
motion around the centre of gravity is described as
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where M is the mass matrix and X is the position of
the floating body. Additionally r; is the position vector
from the centre of gravity to the cell face-centre and 1;
is the unit outward-pointing normal of face .

MoodyMarine solves the Cummins equation [10] as
follows:

MXZF +F; +ﬁr+ﬁe+ﬁezta (4)
B, — M. X, ®)
F,=-CX, (6)
N Tive .

F.=— K(r) X (t — 7)dr, (7)

0

where M, is the (constant) added mass matrix at infi-
nite freﬂuency, and subsequently F, is the added mass
force. F, is the hydrodynamic excitation force and F,
is the stiffness force, with the linear stiffness matrix C.
The radiation damping force is denoted F, where K(t)
is the impulse response function. Connected objects
such as PTOs, mooring lines or applied loads are jointly
denoted F.,;.

III. HYBRID LPF-ML MODEL

It is standard practice to include ad hoc corrections
into the Cummins equation in order to improve the
accuracy of model predictions. The most widespread
example is the Morison-type drag force, which requires
a calibration stage to validate the choice of drag co-
efficients. In the present work however, we choose
instead to use a hybrid LPF-ML approach, in which
the corrections are forecasted by a RNN. Adding a
correction term § to the Cummins equation yields

MX:F;PF+ _}ea:t"'gv (8)
L LPF L L
p :Fa+Fc+ r+ Le. (9)

A. Correction force

The RANS simulations provide results in terms of
two generalised forces: the pressure force F,, and the
viscous force F,. As seen from Eq. (9), LPF include
forces from added inertia at infinite frequency Fa,
radiation damping F,, hydrodynamic excitation F.,
and hydrostatic stiffness F,. We define the following
correction force:

- —»RANS’ - RANS - FNPF
5= +F, ~F, . (10)

We note that the previous studies [11] and [5] em-
ployed a hierarchical modelling approach using differ-
ent fidelity models. As mentioned above, that approach
gives rise to more fine grained correction forces that
can be linked to physical assumptions and simplifica-
tions in the LPF theory. Additionally, proper scaling of
the different terms is possible [12]. However, as illus-
trated in [5] the influence of numerical errors makes
that route problematic in practice.
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Fig. 1. Outline of the training of the RNN for correction forces.

B. RNNs

RNNs are designed to process sequential data by
learning their inter-dependencies in varying lengths.
Long short-term memory (LSTM) network [13] is a
special kind of RNN that avoids the so-called vanishing
gradient problem in RNNs for long-term dependencies
[14]. LSTM has more control over which information
should be kept and which should be forgotten through
its internal memory nodes, and is widely used in many
fields. In this work we use a standard uni-directional
LSTM network.

Matlab’s Deep Learning Toolbox [15] is used to
create and train the LSTM network estimating the
correction terms. For the present application the LSTM
network is made up of a sequence input layer with six
features; an LSTM layer with different sizes of hidden
units; a fully connected layer, and finally a regression
layer. The LSTM layer is stateless at training and uses
the default settings of tanh as a state activation function
and sigmoid as a gate activation function. We also test
using two and three LSTM layers with dropout layers
(with dropout rate 0.2) in between the LSTM layers
to avoid overfitting. We will compare the results with
different structures in the result section.

The adaptive moment estimation (adam) optimizer
[16] is used to train the LSTM. Learning rates of 0.01-
0.001 and up to 200 epochs are used depending on the
time steps, layers and hidden units. The input data is
z-score normalized.

C. Hybrid LPF-ML implementation

The performance of the hybrid LPF-ML model is
highly dependent on the quality of the data used for
training. Fig. 1 outlines the flow of data during the
training. The high-fidelity RANS model is executed
first: either as free floating, or with a prescribed motion
or external force. The CFD model provides results
of FIANS and FIANS as well as the motion (X, X.
Then, the LPF model is run with the prescribed motion
from the CFD model. This is a vital step in order
to minimize errors and achieve a representative one-
to-one mapping between a given body state and its
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Initialize MoodyMarine;
Open portal to MATLAB and initialize workspace;
Load trained RNNs into MATLAB workspace;
while t < t.,,4 do
Evaluate F;,LP F.
Transfer (X, X, F;LP ) to MATLAB workspace;
Evaluate the correction force, §, and update the
RNN;
Transfer 6 from MATLAB workspace;
Update the position and velocity by solving Eq. (8);
end
Close portal to MATLAB;

Fig. 2. Pseudo code for the hybrid LPF-ML set-up.

corresponding force correction. As the full time-history
of the body motion is matched, the methodology also
handles influences from transient effects in the two
models. The output data from the LPF simulations are
the four forces making up F/'F, as defined in Eq. (9).
The LSTM network is then trained with six features of
input data (X X ,ﬁa, ﬁc, Z:“;, ﬁe) against the correction
force ¢ (using the Matlab command trainNetwork).

After the LSTM network has been trained, we use
it in the hybrid LPF-ML discussed above. The Moody-
Marine LPF model [9] was linked to Matlab through
the Engine API for C for this particular purpose. The
MoodyMarine-Matlab coupling is outlined in Fig. 2.
When MoodyMarine is started it creates a portal to a
Matlab workspace. We then load the trained LSTM into
the workspace before the MoodyMarine simulation
is started, and reset the network (using the Matlab
command resetState). In every time-step we update
the six input features and transfer them into the Matlab
workspace. There the input are used by the LSTM
network to produce correction force estimates and to
update the state of the network (using the matlab
command predictAndUpdateState). The correction
force goes back into MoodyMarine and is used to
advance the body motion in time (8).

D. Input signals

Ringwood and co-workers have, for the last decade,
looked into the performance of different input signals
for system identification, e.g. [1], [2], [17], [18]. In a
recent study [19], three families of input signals were
investigated with regard to force-to-velocity input for
design of controllers: sinusoidal signals, chirp signals,
and multi-sine signals. The chirp and multi-sine signals
were found to show large variability and uncertainty.
This is due to the relatively short time spent at each
frequency. The sinusoidal signal was smooth with low
variability, but many sinusoidal signals are required to
span a range of frequencies. To maintain the feasibility
of the hybrid LPF-ML approach, we opted to use a
few multi-frequency cases as training data rather than
a large number of single frequency signals. Thus, the
standard linear up-chirp signal is used for position-
to-force mapping. Additionally, in order to capture
any geometric nonlinearity of a body we will use a
sequence of chirps with different amplitudes.
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TABLE 1
SPHERE DATA. FROM [20].

Parameter Unit Value
Diameter (D) m 0.300

Mass (m) kg 7.056
Center of gravity (CoG) m (0,0,-0.0348)
Roll moment of inertia (I;4) kgm2 0.098251

Pitch moment of inertia (I,,) kgm? 0.098254
Yaw moment of inertia (I,,) 1<gm2 0.073052

Water depth (d) m 0.9
Acceleration of gravity (g) ms—2 9.82
Water density (pw) kgm™3  998.2

IV. TEST CASES

We examine the 1 degree-of-freedom (1DoF) problem
of a heaving sphere. This is a case that has been
used repeatedly within the Ocean Energy System wave
energy modelling task (OES-WEMT) [20]-[22]. The
heaving sphere was first simulated in full-scale (with
a sphere diameter of D=10m) using numerical models
[21], [22], and was later experimentally tested in model-
scale (D=0.3m) by Kramer et al. [20]. The simulations in
this paper have been made in model scale, see Table I
for details.

Four different test cases are investigated following
the simulations in [21]:

o Decay tests. Three drop heights (H;) were
considered in the experiments [20]: H, =
[0.1D, 0.3D, 0.5D], with the sphere just being
lifted out of the water for the 0.5D case. The
duration of the simulations is 3s.

o Regular waves. An incident Stokes V wave at the
resonance period T, = 0.76 s with wave height
H = 0.0584m and no PTO damping. The duration
of simulations is 15s.

o Irregular waves. An irregular sea state is given
by a Pierson-Moskovitz (PM) spectra with a sig-
nificant wave height H, = 0.060 m and peak
period T), = 1.30s. The models are run for 100s,
equivalent to 10 minutes in full-scale.

o Irregular waves with negative spring setting. Set-
tings as in the previous case but with a negative
spring PTO (spring coefficient -4.05E02 N/m and
damping 11.75Ns/m).

A. Training of LSTM

Fig. 3 shows the chirp signals used for training. The
chirp signals have a duration of 20 s and a frequency
range of f € [0.33, 4] Hz. The 4 signals have amplitudes
of a = [0.05,0.1,0.2,0.3]D m respectively. We use all 4
chirps for training since there will be no data overlap
as we validate against the decay test.

The four cases were modelled with interFOAM us-
ing mesh morphing in OpenFOAM-v2212. No symme-
tries were used and we used a mesh of approximately
10M cells. For spatial discretization we use second-
order van Leer scheme for convection terms, second-
order central differences for diffusion terms, and first-
order upwind method for the turbulence equations.
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Fig. 3. Linear up-chirps with different amplitudes.

The time-stepping is carried out using the first-order
backward Euler scheme with a CFL number of 0.5.

With regard to the setup of the LSTM network,
we test to use [25,50, 75,100, 150] hidden units in the
LSTM layers, as well as employing one, two and
three LSTM layers. We also test the time resolution of
the training data, given by the number of time steps
N = [2000, 5000, 20000] in the data.

V. RESULTS

The results are presented as time-series as well as in
terms of normalized root mean square error (NRMSE)
and the Pearson’s correlation coefficient (PCC).

The NRMSE represents the square root of the square
of the differences between target values and output
values and is defined as:

" (T —0y)°
NRMSE = 2z ) , (11)

Y (Th)?

where n is the total number of instances of the studied
data set, T; is the target value and O, is the output
value.

The PCC is a measure of linear correlation between
two sets of data and is defined as

Y (Ti=T) (0: - 0)
\/Z?:l (TZ - T)2\/Z?:1 (Oi - 0)2

where T and O are the mean values of the target and
output values, respectively.

PCC = , (12

A. Sphere heave decay

As a first validation stage we compare with a
straightforward sphere decay test. The very same de-
cay test was investigated in Eskilsson et al. [5] using a
selected decay test for training the LSTM network. In
[11] it was found that using the most nonlinear decay
case for training typically gave satisfactory results, so
the 0.5D drop was used as training data. We will
compare the chirp-trained LSTM network to this decay
trained LSTM network later.

In this work we still test on the decay dataset, but
training is done on the four chirp signals, which exhibit
very different multi-frequency properties, and highly
different transients in the resulting signals. Needless
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TABLE II
NRMSE AND PCC OF CORRECTION FORCES FOR THE DECAY TEST USING DIFFERENT LSTM SETTINGS AND
TIME RESOLUTION OF THE TRAINING DATA.

Training signals ~ Units and layers N 0.1D 0.3D 0.5D

NRMSE PCC NRMSE PCC NRMSE PCC

50 2000 3.42 0.06 1.37 0.36 0.95 0.49
50 5000 115 0.26 0.97 0.63 0.84 0.63
50 20000 0.84 0.42 0.99 0.59 0.88 0.59
75 2000 2.01 -0.40 1.28 041 1.08 0.44
75 5000 1.16 0.10 091 0.62 0.85 0.64
75 20000 0.76 0.53 0.95 0.61 0.85 0.58
100 2000 2.07 -0.28 1.51 0.49 1.03 0.49
100 5000 0.70 0.61 0.74 0.78 0.55 0.84
100 20000 0.97 0.30 1.00 0.59 0.86 0.63
150 2000 1.81 -0.25 1.09 0.58 0.87 0.58
150 5000 1.52 -0.19 0.92 0.65 0.82 0.65
Chirps 150 20000 0.96 0.19 0.87 0.62 0.85 0.60
25/25 2000 1.13 -0.25 1.20 0.38 0.92 0.47
25/25 5000 1.07 0.09 1.16 042 1.16 0.50
25/25 20000 1.22 0.41 0.95 0.54 0.88 0.52
50/50 2000 1.78 -0.12 1.53 0.34 1.00 048
50/50 5000 0.94 0.09 1.00 0.50 0.86 0.62
50/50 20000 112 0.51 0.96 0.60 0.84 0.60
25/25/25 2000 137 -0.20 1.44 0.16 1.23 0.25
25/25/25 5000 0.89 0.35 1.08 0.41 1.00 0.43
25/25/25 20000 0.80 0.49 0.97 0.56 0.82 0.64
50/50/50 2000 1.36 -0.28 1.33 0.34 1.13 0.38
50/50/50 5000 121 -0.25 113 0.43 0.93 0.50
50/50/50 20000 0.88 0.32 0.78 0.66 0.82 0.63

to say, this is a strenuous test case for the LSTM
performance.

Table II presents the NRMSE and PCC values for an
array of different hidden units and layers of the LSTM,
as well as for the length of the in-going time series V.
Fig. 4 illustrate some of the forecasted J time series.

A bit surprising is that the 0.1D case is the hardest
case to forecast with accuracy, the 0.1D case has the
largest NRMSE values as well as variability. We also
see that there is no immediate benefit to using a large
number of hidden units in the LSTM layers. Neither
gives multi-layer structures an immediate advantage in
terms of low NRMSE values. The largest and deepest
structure of neural networks better follows the target
pattern in the case of 0.1D. However, it clearly loose
smooth prediction, which can be a sign of overfitting.

However, we can see a clear result with regard to
the time resolution N. For the 0.1D case the N = 2000
case gives very bad results (Fig. 4a-d). All PCC values,
but one, are negative, meaning that there is a negative
correlation between the target and forecast values. For
the three-layer structure there is a consistent trend of
improved PCC and NRMSE values with increasing V.
Even if this trend is not absolute we see a general
improvement with increased time resolution.

The best results are given by a single LSTM layer
with 100 units and N = 5000 (Fig. 4f). This result seems
however to be due to chance rather than any trends.
The three-layer network with N = 20000 also shows
good results, and these are following the trend with
N as mentioned above. Nevertheless, in the remainder

of this work we use the LSTM network with a single
LSTM layer with 100 units and trained with N = 5000
time steps.

In Fig. 5 we present a comparison of the forecasted
correction forces using decay signals and chirp signals
as training data. For the decay training, the LSTM has
been trained on the 0.5D drop case, which is why it is
marked red in Fig. 5a. The chirp training data includes
the 0.05D, 0.1D, 0.2D and 0.3D amplitudes. It can be
seen that the 0.1D drop is better predicted using the
chirp signal. This is likely due to more small amplitude
data in the chirps compared to training on 0.5D drop.
For the 0.3D case the decay trained LSTM provides
significantly better than the chirp trained. This is, of
course, due to the similarities between the 0.3D and
0.5D drops. Clearly, only the chirp trained LSTM is able
to provide a forecast for the 0.5D case. These findings
are supported by the NRMSE data found in Table II. We
see that the decay trained 0.3D has the lowest recorded
NRMSE, but we also see that the decay trained 0.1D
case performs quite badly. In general, we can say that,
as expected, decay training data performs better for
decay test cases. However, free decay will not perform
well for multi-frequency cases, e.g. irregular waves, as
decay is basically a single frequency signal.

Moving away from the offline training and testing
of the LSTM network towards hybrid LPF-ML simu-
lations, we first verify that the trained LSTM network
provides a forecast in the MoodyMarine-Matlab cou-
pled model that is similar to the forecast in Matlab
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Fig. 4. Forecasted correction forces using different settings for the LSTM, top panels 0.1D, middle panels 0.3D and bottom panels 0.5D
drops cases. Left column: N = 2000, middle column: N = 5000, right column: N = 20000. Top row: 50 units, second from top row: 100
units, second from bottom: 2 layers with 25 units, bottom row: 2 layers with 50 units each.
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Fig. 5. Forecasted correction forces: top panels 0.1D, middle panels
0.3D and bottom panels 0.5D drops cases. (a) decay test as training
data [5] (LSTM with 100 hidden units and N = 3000 time steps)
and (b) chirps as training data (LSTM with 100 hidden units and
N = 5000 time steps).
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Fig. 6. Forecasted correction forces given by Matlab standalone and
Matlab linked to MoodyMarine.
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Fig. 7. Heave decay for 0.1D drop. Top panel: non-dimensional
heave response, and bottom panel: non-dimensional heave force.
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Fig. 8. Heave decay for 0.3D drop. Top panel: non-dimensional
heave response. Bottom panel: non-dimensional heave force.
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Fig. 9. Heave decay for 0.5D drop. Top panel: non-dimensional
heave response. Bottom panel: non-dimensional heave force.
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response. Bottom panel: non-dimensional heave force.

standalone setting, see Fig. 6. We can see that the
trained LSTM works well in the coupled setting. The
small differences are simply due to force-motion feed-
back from the MoodyMarine model when applying
external forces.

Figs. 7 — 9 show the computed heave responses and
heave forces for the different drop heights. Please note
that the LPF-ML forces include the correction 4.

The results of the 0.1D drop case in Fig. 7 show
that both LPF-ML versions perform better than the
standard LPF model. However, the chirp trained LPF-
ML model outperforms the decay trained model. In-
deed, the chirp trained model has a very good fit
both in position and force for the first 2 s. During
the last second of simulation, the chirp LPF-ML model
overestimate the damping of the buoy. The results then
become more similar to the decay trained LPF-ML.

For the 0.3D case the situation is reversed. The decay
trained LPF-ML clearly outperforms the chirp trained.
The decay trained model gives an almost perfect match
to the RANS results. The chirp trained LPF-ML model
performs better than the standard LPF model during
the first half of the simulation. During the second half
a significant phase error becomes evident.

For the 0.5D case there is a significant difference in
response period between the LPF and RANS models,
see Fig. 9. This was first noticed in [22] and was later
confirmed by experimental results [20]. The hybrid
LPF-ML model captures the correct response period
very well. We see a slight phase error at the later
stages of the simulation, but overall the results are very
encouraging. Please remember that the LPF-ML model
is not trained on decay tests, but on generic chirp
multi-frequency signals. Still, the model manages well
to compensate for the nonlinearities in the problem.

B. Heaving sphere in regular waves

We now step away from the decay tests and look at
the regular wave case. We mention that even though
we include the hydrodynamic excitation force F, as
an input feature, see Eq. (9), the training cases only
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involve still water. Thus, the LSTM is presently not
trained to take wave excitation into account, which is
a disadvantage.

Fig. 10 shows a comparison between the LPF, LPF-
ML and RANS models. All models give similar heave
response, although the LPF-ML model more closely
mimics the RANS model. The advantage of the LPF-
ML over LPF is more visible for the heave forces, where
LPF overpredicts the forces. An additional issue that
might cause differences between CFD and LPF models
is that we have used an incident Stokes V:th order wave
in the CFD while only Airy waves in the LPF models.

C. Heaving sphere in irreqular waves

The final case deals with a heaving sphere in irregu-
lar waves, both freely floating and fitted with passive
control through a negative spring and PTO damper.
Here we do not compare to RANS solutions but only
LPF vs LPFE-ML, see Figs. 11 and 12. We see that

\ —LPF —LPF-ML \

— 02f i
g of !
=
h‘ -0.2 L Il Il Il Il ]
50 60 70 80 90 100
Time [s]
Fig. 11. Irregular waves case. Top panel: non-dimensional heave

response, and bottom panel: non-dimensional heave force.

—LPF ——LPF-ML

50 60 70 80 90 100
2
20
>
59
_2 1 1 1 1
50 60 70 80 90 100
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Fig. 12. Irregular waves case with negative spring. Top panel: non-
dimensional heave response. Bottom panel: non-dimensional heave
force.
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the addition of negative spring increases the motion
response by a factor of two and also decreases the
frequency of the response. However, with regard to
the influence of the nonlinear correction we can not see
any. Neither in the freely floating case nor the negative
spring case can we see any clear effects of including the
LSTM corrector. This is surprising as the nonlinearity
of the negative spring should be considerable. This
requires further investigation and is ongoing work.

VI. CONCLUSION

Machine learning (ML) can be used to enhance the
performance of linear potential flow (LPF) models,
by giving better approximations to weakly nonlinear
forces than parameterized formulas and tabulated coef-
ficients. In this work we looked into to the performance
of such a hybrid LPF-ML model. It was shown that we
were able to capture the nonlinear corrections for large
drop decay tests even when a very generic input signal
(up-chirp) was used. This gives hope to find a standard
setting for choosing input signals.

In addition, work is ongoing to decide on and in-
clude training cases with wave excitation. The results
of this paper indicate that a sufficiently small data set
can be found, which still provides enough nonlinear
training data to span the nonlinearities captured by the
LSTM network.
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