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Synthetic eddy generation and modelling of
turbine operation in a turbulent tidal flow

Matteo Gregori, Francesco Salvatore, Danilo Calcagni, and Roberto Camussi

Abstract—This paper presents an original computational
methodology to simulate the operation of hydrokinetic
turbines in turbulent onset flows. Turbulent eddies are
generated in the flow by volume forcing terms in the
Navier–Stokes equations, and the intensity of the result-
ing turbulent stream is controlled to match prescribed
conditions. The Navier–Stokes equations are numerically
solved by a hybrid viscous/inviscid formulation in which
a Boundary Integral Equation Method (BIEM) is used to
predict the perturbation induced by a turbine, whereas
the surrounding viscous flow is described by Detached
Eddy Simulation (DES). The methodology is applied to
simulate the operation of a horizontal–axis turbine in a
16% turbulent onset flow. The numerical results show
that a divergence–free, nearly isotropic turbulent flow is
established with a turbulence intensity 19% lower than the
imposed value. Turbine loads are evaluated to quantify
the effects of incoming eddies on device performance.
By taking into account the velocity defect induced by
the turbulence generation forcing terms, mean thrust and
power coefficients are very close to those calculated in zero
turbulence conditions, whereas fluctuations between 15%
and 25% of the corresponding values in zero turbulence
conditions are observed.

Index Terms—Tidal energy, turbulence, Synthetic eddy
generation, DES, BIEM, Volume force method

I. INTRODUCTION

THE performance and reliability of hydrokinetic
turbines operating in marine sites and rivers is

strongly affected by turbulence in the onset flow. Ed-
dies with a wide range of spatial and time scales
are primarily generated by surface winds and waves,
shear layers in the water column, submerged obstacles.
The entrainment of eddies into the rotor streamtube
determines unsteady flow conditions on blades that
result into transient forces and moments at blade root
as well as fluctuating rotor thrust and power [1], [2].

The characterization of turbulence–induced loads is
fundamental to design blades and powertrain com-
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ponents for enhanced fatigue–life performance in real
operating conditions. To face the problem, the com-
plex phenomenology of tidal stream turbulence is the
subject of experimental campaigns in field sites, see
e.g., [3]–[5]. Real conditions are partially reproduced at
laboratory scale in flume and towing tanks where the
effect of turbulence on model turbine performance can
be studied in controlled conditions [6], [7].

Complementary to experimental techniques, Com-
putational Fluid Dynamics (CFD) is widely applied
to investigate harmful operating conditions and to
inform the design of enduring devices with no need
of expensive component oversizing. A variety of ap-
proaches exists for the generation of a turbulent stream
in the computational modelling of the fluid dynamic
interaction between a solid body and the surrounding
flow [8]. A broad classification distinguishes between
precursor methods and synthetic methods. Precursor
Methods (PM) are based on the assumption that tur-
bulence can be injected into a computational domain
by imposing as inlet condition a velocity distribution
that describes a fully developed turbulent field. The
input velocity distribution can be derived from exper-
imental data or generated by an independent com-
putational analysis [9], [10]. Synthetic Methods (SM)
exploit a direct application of the classical Reynolds
decomposition, where a turbulent flow is represented
as the superposition of a baseline laminar flow and
a randomly fluctuating velocity field [11], [12]. The
latter can be generated as a noise function defined
as the convolution between a random signal and a
suitable filtering function, or by projecting the ran-
dom velocity distribution onto a basis of harmonic
functions [13]. Both PM and SM models have in
common that the baseline flow is combined with an
independent velocity perturbation that is injected to
the flow (PM approach) or superimposed to it (SM
approach). Once the resulting turbulent flow is estab-
lished, its consistency with the solution of the Navier-
Stokes equations remains to be demonstrated. Dealing
with incompressible flows, further modelling is often
required to enforce the divergence–free condition is
satisfied [14]. A particular case of Synthetic Methods
is the Synthetic Volume Forcing Methods (SVFM). The
idea is to generate turbulent structures in an arbitrary
flow by introducing obstacles in the computational
domain that are simulated by volume forcing terms
in the right–hand side of the Navier-Stokes equations.
In this case, the turbulent onset flow is generated as
part of the CFD problem. Examples are e.g., [15], [16],
for aerodynamics studies, and [17] dealing with tidal
turbine flow simulations.
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The present work deals with a SVFM approach based
on an original definition of the forcing terms used
to generate turbulent structures in the baseline flow.
The volume force terms are defined by a random
distribution combined with a superposition of sinu-
soidal harmonics with random phase. The distribution
is imposed in a thin layer in the upstream part of the
computational domain. The requirement to reproduce
a turbulent flow with given properties is obtained by
tuning the intensity of the volume force distribution by
a Proportional-Integral-Derivative (PID) control strat-
egy. The variance of the flow velocity components
are used as control variables. In [18] the model was
initially applied to describe a turbulent stream in an
unbounded flow studied by Detached Eddy Simulation
(DES). The capability to generate eddies that evolve
into a homogeneous, isotropic turbulent flow with
given intensity was discussed.

The methodology proposed in [18] is extended here
to analyze the interaction between the generated onset
turbulent flow and a tidal turbine. By DES, the turbine
can be described as a solid obstacle with suitable treat-
ment of the no-slip condition at walls. An alternative
computationally efficient approach is used in which the
turbine is simulated by a volume force method, in a
similar fashion as turbulence generation is modelled.
Specifically, a hybrid viscous/inviscid flow method-
ology is applied in which the DES solver is strongly
coupled with a Boundary Integral Equation Method
(BIEM) solver for inviscid flows. At each time step, the
blade load distribution is calculated by a time-accurate
BIEM solution and recast as volume force terms that
are plugged into the DES solution. Both DES and BIEM
solvers are in–house built at the Institute of Marine
Engineering of the Italian National Research Council
(CNR-INM) and have been extensively validated for
marine propulsors and tidal turbines [19]–[21].

The numerical application deals with a 3-bladed
horizontal-axis tidal turbine in a 16% intensity tur-
bulent onset flow. The methodology is described in
sections II and III, details of the case study and of the
computational set–up are given in section IV, whereas
numerical results are presented and discussed in sec-
tion V. Particular attention is given to characterize
the generated turbulent stream in terms of key met-
ric quantities like turbulence intensity, Power Spectral
Density (PSD), time and spatial means, isotropy. The
numerical results are discussed to assess the capability
of the proposed methodology to provide a physically-
consistent description of the operation of a tidal turbine
in a real turbulent flow.

II. FORMULATION FOR VISCOUS FLOWS WITH
TURBULENCE GENERATION

A general formulation for turbulent viscous flows
is given by the Navier-Stokes equations where the
classical Reynolds decomposition is used to represent
the velocity field u = u(x, t) and the pressure field
p = p(x, t) as the combination of mean and randomly
fluctuating terms

u = u + u′; p = p + p′, (1)

where the overbar symbol denotes a mean quantity
and, by definition, u′ = p′ = 0.

Consider a 3D Cartesian orthogonal frame of refer-
ence (Ox1x2x3) with unit vectors ei(i = 1, 2, 3). Under
incompressible flow assumptions, mass and momen-
tum equations for mean variables can be written as
(hereafter the overbar symbol for mean quantities is
omitted)

∂ui
∂xi

= 0 (i = 1, 2, 3) (2)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj
Tij + fi

where repeated indices denote summation. The quan-
tity Tij describes the components of the Reynolds stress
tensor T = (u′iu

′
j)ejei that, under the Boussinesque

turbulent viscosity assumption, read

Tij =
1

Re
T

(
∂ui
∂xj

+
∂uj
∂xi

)
(3)

where Re
T

is the Reynolds number referred to the
turbulent viscosity µ

T
.

In the right-hand side of Eq. (2), the quantity fi =
f · ei denotes the i–th component of a generic volume
force field. In the present formulation, a volume–force
approach is used to define forcing terms in the momen-
tum equation that are responsible for perturbations to
the onset flow. This includes a contribution f

B
to rep-

resent the perturbation induced by a turbine, as it will
be discussed in section III. Similarly, a volume–force
distribution f

T
is defined to inject turbulent eddies in

the flow. Assuming no other volume force distributions
exist, one has

f = f
T
+ f

B
(4)

A. Volume force generation model
The proposed approach to generate turbulence in an

arbitrary onset flow falls within the class of Synthetic
Volume Forcing Methods (SVFM). A review on SVFM
formulations and the detailed derivation of the present
model are given in [18], whereas the methodology
is briefly recalled here. The underlying assumption
common to all SVFM formulations is that volume
forcing terms in the right–hand side of the momentum
equations (2) can be used to simulate the presence of an
obstacle in the flow whose effect is to generate a turbu-
lent wake downstream of it. The physical interpretation
is found in the grids that are used in wind tunnels and
water flumes to generate a requested turbulence level
in the test section [22]. The definition of the volume
force distribution characterizes the properties of the
turbulent stream that can be generated.

In the present approach, the forcing terms are de-
fined as a spatially random distribution combined
with a superposition of sinusoidal harmonics with
random phase. Assuming the unperturbed onset flow
is uniform and aligned to the x1 axis, the distribution
f
T

= f
T
(x, t) is zero throughout the computational

domain except for a small region conveniently located
upstream of the region of interest, e.g., where a turbine
is located. This generation region consists in a thin layer
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in the x1 direction and covers a wide area in the normal
direction. The Cartesian components of the baseline
volume force distribution f

T,0
are defined as follows

(f
T,0

)i (x, t) = C1

∑
k=1,Nk

[sin (2πλkx2 + ψ′(t))

+ sin (2πλkx3 + ψ′′(t))] (5)
+ C2W (x2, x3, t) (i = 1, 2, 3)

where Nk is the number of harmonic terms and λk is
the wavelength associated to each term. The phases ψ′

and ψ′′ and the quantity W are built from a constant
probability density function that generates pseudo ran-
dom values in the range [0 : 1]. Quantities ψ′ and ψ′′ are
further scaled to fit in the [−π : π] range. By definition,
W values at distinct points xa,xb or time instants t1, t2,
have zero correlation. Finally, the constants C1, C2 are
used to normalise the baseline volume force intensity
in the range [−1 : 1]. An example of random volume
force distribution obtained by Eq. (5) with Nk = 1 is
shown in Fig. 1, taken from [18].
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Fig. 1. Sample of the baseline random distribution of volume forces
from Eq. (5) (Nk = 1, and λ1 equal to 1/4 of span).

B. Turbulence metrics and control strategy
The baseline volume force distribution defined by

Eq. (5) is general and can be used to generate eddies
with arbitrary intensity by varying the C1, C2 con-
stants. Further modelling is required in order to obtain
that the perturbation to the flow corresponds to an
expected amount of turbulence downstream of the gen-
eration region. This aspects is of primary importance
in the attempt to simulate the conditions in a real tidal
site with a specific turbulent flow climate.

The characterization of perturbed flow conditions is
achieved by evaluating the statistical properties of the
velocity field. A review on turbulent flow metrics can
be found e.g., in [23]. By following a classical approach
for the analysis of random phenomena, the correlation
between fluctuating velocity components is introduced
to derive key metric quantities. Denoting by r = x−x0

a position vector with respect to an arbitrary point x0,
the spatial correlation tensor reads

Rij(r) = E
[
u′i(x)u

′
j(x+ r)

]
(6)

where the symbol E[ ] denotes the expected value op-
erator. A dual definition holds for the time correlation

tensor as Rij(τ) = E[u′i(t)u
′
j(t + τ)], where τ is an

arbitrary time. For r = 0 or τ = 0, the quantity Rij(0)
equals the Reynolds stress tensor, and each diagonal
term defines the flow variance σ2

i in the xi direction.
A common definition of the turbulent intensity I∞ is

I∞ =
1

u∞

√√√√1

3

3∑
i=1

σ2
i (7)

where u∞ is a reference mean flow speed. Under ho-
mogeneous isotropic turbulence assumptions, one has
σ2
1 = σ2

2 = σ2
3 , and by introducing σ2 = σ2

i (i = 1, 2, 3),
Eq. (7) yields I∞ =

√
σ2/u∞.

The problem of simulating given turbulent flow
conditions by Eq. (5) can be formulated as tuning the
volume force distribution so that the generated flow
has the requested intensity I∞ or variance terms σ2

i .
In order to accomplish this, a control strategy is im-
plemented to dynamically modify the spatial and time
distribution of volume force terms in Eq. (5). Specifi-
cally, a standard Proportional-Integral-Derivative (PID)
controller is applied, and variance terms σ2

i in the flow
downstream of the turbulence generation region are
observed by the control algorithm. Assuming the target
condition is to establish homogeneous and isotropic
turbulence with a given variance intensity σ2

des, the
deviation between generated and target conditions can
be described through the following error functions
Ei, (i = 1, 2, 3)

Ei =
(
σ2
des − σ2

i

)
/σ2

des (8)

The minimization of the error functions above is ob-
tained by the PID control through the parameters
ki, (i = 1, 2, 3) defined as

ki(t) = a1 iEi(t) + a2 i

∫ t

t0

Ei(t)dt + a3 i
∂

∂t
Ei(t) (9)

where t0 < t, and the coefficients a1 i, a2 i, a3 i define,
respectively, the proportional, integral and derivative
control parameters for the i–th component.

Quantities ki(t) are used as tuning functions for the
baseline volume force distribution, and Eq. (5) is recast
as (i = 1, 2, 3)

(f
T
)i (x, t) = ki(t) (fT,0

)i (x, t) (10)

III. INSTREAM TURBINE MODEL

The turbulence generation and control model de-
scribed in the previous section can be combined with
an arbitrary formulation for the numerical solution
of the Navier-Stokes equations for turbulent viscous
flows. In the present work, a hybrid viscous/inviscid
flow model is applied to study the interaction between
a horizontal axis turbine and the incoming flow. The
methodology is briefly described here, whereas details
are given in [24], with applications to an isolated
turbine and to two in-line turbines.

The approach consists in the coupling between an
inviscid–flow model that predicts the perturbation
induced by the turbine and a viscous–flow model
that describes the turbulent flow in which the tur-
bine is immersed. The turbine simulation is performed
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by a Boundary Integral Equation Model for inviscid
flows (BIEM, [20]), whereas the turbulent viscous flow
around the turbine is described by a numerical solu-
tion of the Navier-Stokes equations by Detached Eddy
Simulation (DES, [25]). The coupling between viscous
and inviscid-flow solutions is established by a volume–
force/effective–inflow iterative approach. Each step of
the iteration corresponds to a physical time step of
the time marching solution for both BIEM and DES
solvers. In the BIEM solution, the impermeability con-
dition on the turbine surface is imposed by considering
the incoming flow calculated by DES by removing
the turbine–induced velocity calculated under inviscid
flow assumptions (effective inflow). The hydrodynamic
forces on turbine blades calculated by BIEM are recast
as volume forces f

B
in Eqs. (4) and (2). To ensure

a time–accurate representation, the volume forces are
distributed in volume grid cells corresponding to the
actual position of blades at each time step. The DES
solution including the turbine–induced forcing terms is
used to update the flow incoming to the turbine for the
BIEM solution at the next time step and the procedure
is repeated, as sketched in Fig. 2.

Fig. 2. Iterative procedure for the hybrid DES/BIEM solution.

Both BIEM and DES solvers are in–house built at
CNR-INM. The BIEM solver is valid for unsteady
flows around lifting bodies in arbitrary motion with
respect to a uniform or non–uniform incoming flow.
Under inviscid, irrotational flow assumptions, Eqs. (2)
are recast as the Laplace equation for the velocity
potential φ = ∇u, and the Bernoulli equation for the
pressure [26]. A trailing wake model is introduced to
describe the mechanism of generation of vorticity and
the associated lift and induced drag forces on turbine
blades. A simple Viscous Flow Correction (VFC) model
allows to estimate the effect of viscosity on blade
loads that is neglected by the inviscid flow condition.
The correction is obtained by comparing lift and drag
forces calculated at each blade section by BIEM with
the corresponding viscous forces on 2D foils having
the same geometry of blade sections and operating at
the same conditions in terms of velocity and angle
of attack, where three–dimensional flow effects are
predicted by BIEM. The X-Foil solver [27] is used to
determine 2D viscous flow lift and drag curves.

The DES solver is part of a general purpose Navier–
Stokes code based on a finite volume technique with
pressure and velocity co–located at cell center. Viscous
terms are integrated by a standard second order cen-

tered scheme, whereas for the convective and pressure
terms a third order upwind scheme is chosen. A library
of turbulence and Large Eddy Simulation (LES) models
is available, whereas Detached Eddy Simulation is
based on the Spalart–Allmaras turbulence model [28].
Under incompressible flow conditions, at every time
step a divergence–free velocity field is enforced by an
artificial compressibility approach, in which a pseudo–
time derivative is introduced in the discretized system
of equations [29]. The solver is written for a structured
volume mesh with partially overlapping blocks that
are processed by a chimera algorithm to interpolate
the solution among different sub–grids [19].

It is worth to observe that combining the turbulence
generation model in section II and the hybrid vis-
cous/inviscid turbine flow model, a unified volume–
force methodology is obtained. In particular, the vol-
ume force distributions f

B
and f

T
in Eq. (4) are inde-

pendent in that the mechanism of production is differ-
ent and the flow regions where they are distributed are
completely disjoint.

IV. NUMERICAL APPLICATION

The generation of a homogeneous isotropic turbulent
flow by the volume force model in section II was pre-
sented in [18] for the particular case of an unbounded
flow. In this section, the extension of the methodology
to the analysis of a tidal turbine in the generated
turbulent flow is addressed.

The case study is a three–bladed horizontal–axis
turbine operating at constant rotational speed n (rps)
in a uniform onset flow with turbulence intensity I∞ =
0.16 and averaged speed V0 = 2.0 m/s. Assuming
a design TSR λ = 5, this yields a turbine rotational
speed n = 6.38 rps. Main turbine geometry data are
given in Table I and describe a commercial design
by Schottel Hydro [30]. At model scale, this turbine
has been extensively studied by flume tank tests, see
e.g., [31].

TABLE I
MODEL TURBINE GEOMETRY PARAMETERS.

Rotor diameter (model scale), D 0.5 [m]
Blades number, Z 3
Pitch angle at 70% span, Φ07 7.5 [deg]
Pitch angle at tip, Φtip 5.3 [deg]
Thickness ratio, 70% span, t/c 0.125 [-]
Hub/rotor diameter ratio 0.09 [-]
Blade section profile Schottel Hydro

The numerical solution describing the turbine in the
turbulent onset flow is obtained by a code in which
the DES and BIEM solvers are strongly coupled, as
described in section III. For the sake of clarity, the
computational set-up for the DES and BIEM parts are
separately described.

A. Computational set-up: DES and turbulence generation

The computational domain for the numerical solu-
tion by DES is a flow region delimited by a cylinder
with axis aligned with the x1 axis and parallel to the
direction of the unperturbed flow, Fig. 3.



GREGORI et al.: SYNTHETIC EDDY GENERATION AND MODELLING OF TIDAL TURBINE 307–5

Fig. 3. Volume grid for the DES solution.

With reference to the turbine diameter D, the cylin-
der has diameter 9D, length 26D, with the upstream
base (inlet section) at x1 = −15D, and the downstream
base (outlet section) at x1 = 11D, with the turbine
plane at x1 = 0. An hexahedral grid block defines
the region where the volume forces f

T
are distributed

and turbulence is generated (generation block). This
block is placed one diameter upstream of the turbine
plane, is 0.05D thick in the streamwise direction, and
1.4D × 1.4D wide in the crossflow directions. Down-
stream of it, an hexahedral grid block defines the flow
region where the generated turbulence is monitored
and statistical properties are evaluated (control block).
This block is 2D long in the x1 direction and 1.3D ×
1.3D wide. Recalling a hybrid DES/BIEM approach
is used, the blades do not represent solid boundaries
and a simple grid in the turbine region is built. Five
body–fitted blocks discretize the flow region around
the nacelle, with grid refinement in direction normal to
the wall. A toroidal block delimiting the region swept
by rotating blades delimits the domain where blade–
induced volume forces f

B
are distributed (rotor block).

Downstream of it, a toroidal block is placed to refine
the grid in the flow region where the tip vortices shed
at blade tips are convected downstream. The computa-
tional domain is completed by a background block that
is internally delimited by a thin cylindrical gap that is
filled with two partially overlapping hexahedral blocks
extended from the centre of the domain to the inlet and
to the outlet sections. Dimensions and number of cells
of main grid blocks are summarized in Table II. The
number of cells is referred to the finest grid level, with
coarser levels obtained by removing every other point
from the finer one. For the present study, a 3 levels
mesh was built, with a total of 13.4M cells in the finest
level. A sketch of the discretization in the the near field
region on the longitudinal plane x3 = 0 is illustrated
in Fig. 4.

Combining the volume force representation of
blades, and the overlapping–grid technique in the DES
solver, the generation of a structured multi–block mesh
becomes a trivial task that in the present study has been
performed by using an in–house developed, automated
grid generation tool.

No–slip boundary conditions are enforced at the
nacelle solid walls. At the inlet boundary the velocity

TABLE II
VOLUME GRID: MAIN BLOCKS SIZE Li IN THE i–WISE DIRECTION

(i = 1, 2, 3), AND NUMBER OF CELLS IN THE FINEST LEVEL.

Block L1/D L2/D (r/D) L3/D No. cells
Generation 0.05 1.4 1.4 24 × 120 × 120
Control 2.0 1.3 1.3 320 × 160 × 160
Nacelle 0.11 (0.05) – 160 × 56 × 96
Rotor 0.1 (0.5) – 96 × 240 × 40
Wake 1.5 (1.3–1.6) – 184 × 240 × 40
Background 26.0 (9.0) – 200 × 64 × 96

Fig. 4. Discretized near field region in the longitudinal plane x3 = 0.
The coarsest grid level is represented.

is set to the undisturbed flow value, whereas at the
outflow the pressure is set equal to zero.

B. Computational set-up: BIEM model
The BIEM solution requires the discretization of

the turbine surface (blades and nacelle) and of the
helicoidal wakes shed at each blade trailing edge.
Figure 5 shows details of the mesh, whereas the size
of each grid patch is given in Table III. Similarly to
the volume grid discussed above, the surface mesh
has been automatically generated from the turbine 3D
model by an in–house developed tool.

TABLE III
MODEL TURBINE: BIEM GRID DISCRETIZATION ELEMENTS.

Blade 36 (chordwise) 30 (spanwise)
Hub 72 (axial) 30 (peripheral)
Wake 90 (streamwise) 30 (radial)

C. DES/BIEM coupling
The solution of the coupled DES/BIEM problem

is obtained by a time–marching calculation. At each
physical time step, a pseudo–time cycle is performed
to enforce the divergence–free condition of the velocity
field in the DES solver. Within the pseudo–time loop,
calls to the BIEM solver are repeated to achieve conver-
gence of the flow perturbation induced by the volume
forces f

B
representing blade loads. The evaluation of

volume forces f
T

to inject turbulence in the onset flow
is repeated at each step of the physical time loop.
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Fig. 5. Computational grid for the BIEM solution of the turbine
flow. Left: full turbine assembly and trailing wake shed by one blade.
Right: detail of the nacelle and blade roots.

The physical time step used in the present study
is ∆t = 0.001309s. Considering the nominal inflow
velocity and the computational grid dimensions, the
perturbation originated at the generation block takes
about 2300 steps to be convected to the outlet of the
computational domain. At TSR 5, the rotation of the
turbine at each time step is 3.0 degrees, and DES and
BIEM time–marching solutions are sinchronized. As
example, Fig. 6 shows the residuals of the DES solver
during 5 physical time steps, corresponding to about
150 pseudo–time steps in total. Within the pseudo–time
cycle, the residuals of the velocity components reach
values below 10−3 whereas pressure residuals drop to
2·10−3.

Fig. 6. Velocity and pressure residuals of DES solver in the coupled
DES/BIEM solution during 5 pseudo–time cycles.

V. RESULTS AND DISCUSSION

The computational analysis combining the hybrid
DES/BIEM model, and the volume force turbulence
generation model has been performed with the main
objective to characterize turbine loads and wakefield
with a turbulent onset flow and to compare results with
laminar uniform inflow conditions. A key aspect is the
capability of the volume force model described in sec-
tion II to generate a stationary homogeneous isotropic
turbulent flow with a given intensity I∞. Similarly, the
capability of the coupled DES/BIEM solver to correctly
determine the perturbation induced by the turbine to
the surrounding flow has been investigated.

A. Turbine loads and induced flow by BIEM

The turbine performance is characterized in terms of
thrust T , torque Q and power coefficients as

CT =
T

1/2ρAV 2
∞
,

CQ =
Q

1/2ρAV 2
∞R

,

CP =
QΩ

1/2ρAV 3
∞

= CQ · λ

(11)

where R = D/2 is the rotor radius, A = πR2 is the
swept area, and Ω = 2πn the angular velocity. The
non-dimensional kinematic parameter λ denotes the
Tip Speed Ratio (TSR)

λ =
ΩR

V∞
(12)

Figure 7 presents turbine thrust and power curves
predicted by BIEM over a full range of operating con-
ditions from deep stall to overspeed. Plotted data have
been normalized with respect to measured CT , CP val-
ues at λ = 5 (design point). The numerical predictions
include viscosity effects by the VFC model as described
in Section III, and are compared with measurements
performed at the CNR-INM depressurized flume tank
by using a 500 mm diameter model [31] with a 2.0
m/s onset flow speed. Nominal turbulence in the
flume tank is about 3%, which can be considered to
have a negligible impact on turbine performance. The
comparison with experimental data demonstrates that
the BIEM model with viscous–flow correction provides
reliable predictions of turbine hydrodynamic loads.
In particular, both thrust and power are accurately
predicted across the turbine operational range.
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Fig. 7. Turbine performance curves by BIEM. Normalized coefficients
of thrust (left), and power (right).

Turbine thrust and power values at each TSR are
obtained by integrating normal stress (pressure) and
tangential stress (friction, by the VFC model) over the
surface of blades. A triaxial view of the turbine and
the trailing wake shed by one blade is presented in
Fig. 8. The contourmap depicts the distribution of the
pressure coefficient cp = (p − p0)/[1/2ρ(nD)2], where
p0 is the ambient pressure.
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Fig. 8. Triaxial view of the turbine with trailing wake pattern and
pressure coefficient distribution on blade surface by BIEM (λ = 5).

The surface load on each blade is averaged between
suction and pressure sides to obtain mean load surface
distributions. An example of non dimensional axial,
tangential and radial components of mean surface
loads at λ = 5 are plotted in Fig. 9. The volume force
distribution f

B
in eq. (4) is obtained by projecting mean

surface loads on the rotor block of the volume grid in
Fig. 3, by using the procedure described in [32]. Under
non–uniform inflow conditions, different distributions
from each blade are evaluated. This is the case in
the present study, where incoming turbulent eddies
determine a non–homogeneous inflow that results into
transient blade loads. The calculated volume force
distribution is time–accurate, as it preserves the actual
position of rotating blades at each time step of the
hybrid DES/BIEM solution.

Fig. 9. Sample mean blade load distribution by BIEM. Left to right:
axial, tangential, radial components (λ = 5).

B. Hybrid DES/BIEM study of zero turbulence conditions
The turbine blade loading by BIEM is used in the

hybrid DES/BIEM model to determine the perturba-
tion induced by the rotor to the surrounding flow.
By plugging this pertubation into the DES solution, a
physically–consistent description of the complex inter-
play between the vortical structures shed by turbine
blades and the viscous flow can be obtained. In order
to better analyze the impact of onset flow turbulence,

the flowfield solution with no turbulence generation
(zero infow turbulence) is presented first. The turbine
operating condition at λ = 5 is considered. Assuming a
kinematic viscosity ν = 1.004 10−6 m2/s, and recalling
V0 = 2.0 m/s, and D = 0.5 m, the reference Reynolds
number is Re = DV0/ν = 0.996 106.

Figure 10 presents the distribution of the axial ve-
locity u1 and of the vertical velocity u3 in the lon-
gitudinal plane x2 = 0 at a representative time step
when the solution reaches a regime condition. The
flow is directed left to right and velocity is non di-
mensional with respect to V0. Recalling the turbine
blades are represented by a volume force model in
the DES solution, the only physical boundary is the
nacelle. The axial velocity defect associated to thrust
and power generation by the rotor is apparent in top
Fig. 10, whereas the radial expansion of the streamtube
downstream of the rotor plane is clearly shown by the
path of trailing vortices shed by blades. The vertical
velocity component in bottom Fig. 10 is consistent with
the radial expansion of the turbine wake. In the near
wake region characterized by a fine volume grid, the
strong velocity perturbations generated by the trailing
vortices and the bluff–body wake generated by the
nacelle are clearly described. The footprints of blade
wakes on the longitudinal plane are hardly visible, as
their intensity is very low as compared to tip–vortices.
As a consequence of viscous diffusion, the blade wake
flow perturbation tends to rapidly disappear at some
distance from the rotor plane, whereas tip vortices are
coherent structures that persist in the computational
domain portion where a sufficient grid refinement
exist. At larger distance downstream of the rotor plane,
the volume grid is coarse and wake structures are
smoothed.

Fig. 10. Turbine in zero inflow turbulence, λ = 5. Non dimensional
axial velocity u1/V0 (top) and vertical velocity u3/V0 (bottom).
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In order to better characterize tip–vortex and hub
wake regions, the vorticity field is described in terms of
vorticity magnitude ζ = ∥∇×u∥, whereas the so–called
λ2 quantity allows to detect eddies associated to both
coherent vortices and turbulence. Following [33], λ2 is
defined as the second eigenvalue of tensor Λ = A2+Ω2,
where A and Ω represent, respectively, the symmetric
and anti–symmetric part of the velocity gradient ten-
sor. A triaxial view of λ2 iso–surfaces is presented in
Fig. 11, with the colormap on the iso–surfaces describ-
ing the intensity of the vorticity magnitude. The onset
flow is directed from right to left. The footprints of
the rotor blades are clearly detected by the vorticity
that is generated on these surfaces. In the turbine
wake, the vortices shed at blade tips form a regular
helicoidal path. The vortical structures released from
the boundary layer around the nacelle surface are also
visible.

Fig. 11. Turbine in zero inflow turbulence, λ = 5. λ2 iso–surfaces
with colormap describing the vorticity intensity.

C. Hybrid DES/BIEM analysis in turbulent flow conditions
Numerical results by the hybrid DES/BIEM model

with turbulence generation are presented in this sec-
tion. A 16% turbulence intensity (I0 = 0.16) is imposed
as the target condition, and the turbine operating con-
dition is identical to the case discussed in the previous
section, λ = 5. During the time–marching solution, the
flow perturbation associated to turbulence generation
expands in the computational domain with an aver-
aged convection speed approximately corresponding
to the onset flow speed V0. Downstream of the tur-
bulence generation region, the flow is characterized by
significant fluctuations of flow variables as the effect of
turbulent eddies that are continuously generated with
random distribution in time and space, as described in
section II.

Figure 12 presents the distribution of non dimen-
sional axial velocity u1/V0 and vertical velocity u3/V0
in the longitudinal plane x2 = 0. The flow is directed
left to right, and the plotted flowfields can be compared
with those in Fig. 10 for the zero inflow turbulence
case. Due to the unified volume force approach used,
both the turbulence generation obstacle and the rotor
blades are visible in the computational domain only
through the perturbation they induce to the flow. The
contourmaps illustrate how the turbulence injected in
the onset flow interacts with the vorticity pattern in the

turbine wake. In order to capture this phenomenology
in the numerical solution, a fine grid is required.
Figure 12 reveals that this condition is satisfied only in
the region between the generation and the rotor disc
and partially downstream of the rotor disc. This region
corresponds to the control grid block shown in Fig. (3).

Fig. 12. Turbine in 16% turbulent flow, λ = 5: non dimensional axial
velocity u1/V0 (top) and vertical velocity u3/V0 (bottom).

In addition to eddies in the incoming flow, another
major difference with respect to the zero inflow tur-
bulence case, is the velocity defect associated with
the turbulence generation block in the fluid domain.
This aspect is well known in experimental tests where
physical grids are used to generate turbulence [22].
With reference to the present computational model,
the problem is addressed in [18], where the results
of unbounded flow simulations with increasing levels
of target turbulence intensity, from 10% to 30% are
presented. In particular, in the I∞ = 0.10 case, the
averaged axial velocity at distance 2D downstream
of the generation block was found equal to 96.8% of
the nominal freestream velocity, whereas it reduced
to 82.2% and 75.4%, respectively, with 20% and 30%
turbulence intensity.

In order to determine the mean velocity and other
statistical properties of the turbulent flow upstream
and downstream of the turbine, the control grid block
defined in Fig. (3) is splitted along the x1 direction into
four identical sub–blocks, see Fig. 13. The sub–blocks
are numbered 1 to 4 moving from upstream (right) to
downstream (left) and sub–blocks centers are identified
as probes P1 to P4. The turbulence generation block
is placed upstream of the sub–block 1, whereas the
turbine is positioned between the second and third
sub–blocks. Table IV presents results for spatial mean
velocity components ui and variance σ2

i , obtained by
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averaging quantities at each grid cell in sub–blocks 1
and 2. Spatial means are compared with time mean
velocity components ũi and variance σ̃2

i , obtained by
averaging time series at sub–blocks probes P1 and P2.
Data are representative of a time step when the time–
marching solution reaches a regime condition.

Fig. 13. Near–field region of the computational domain with gener-
ator grid block and control grid block splitted into four sub–blocks.

TABLE IV
NORMALIZED SPATIAL AND TIME MEANS OF VELOCITY AND

VARIANCE UPSTREAM OF THE TURBINE.

Sub-block 1 i = 1 i = 2 i = 3
ui/V0 0.900 -.0361 -.0362
ũi/V0 0.891 -.0463 -.0333
σ2
i /V

2
0 0.0181 0.0157 0.0160

σ̃2
i /V

2
0 0.0205 0.0163 0.0198

Sub-block 2 i = 1 i = 2 i = 3
ui/V0 0.852 -.0290 -.0291
ũi/V0 0.786 -.0358 -.0369
σ2
i /V

2
0 0.0121 0.0097 0.0098

σ̃2
i /V

2
0 0.0086 0.0063 0.0064

By using the results in Table IV, and the relationship
between turbulence intensity and variance in (7), one
obtains that in sub–block 1 the turbulence intensity
calculated by the spatial mean variance is Is,1∞ = .129,
and calculated by time mean variance at probe 1 is
Ip,1∞ = .137. This corresponds to turbulence levels that
are, respectively, 19.3% and 14.4% lower than the target
value I0 = 0.16. Variance data from sub–block 1 are
taken as input in the control strategy described in sec-
tion II-B. The above results reveal that the PID–based
algorithm allows to obtain only a qualitative match-
ing of requested conditions. Moving downstream to
the sub–block 2 region, turbulence intensity reduces
under the effect of numerical dissipation and of the
interaction with the turbine–induced perturbation that
reduces the actual flow speed, as apparent from ui, ũi
values in the table. The spatial mean gives Is,2∞ = .103,
whereas the time mean at probe P2 yields Ip,2∞ =
.084. Quasi identical variance terms are obtained in
the x2, x3 directions, and slightly higher values in
the streamwise direction x1. It can be concluded that
a non-homogeneous, approximately isotropic field is
generated. A quantitative analysis of turbulent flow
isotropy is also presented later.

Results in Table IV describe the properties of the
total velocity field from the hybrid DES/BIEM solution.
In order to characterize the turbine performance, it is

important to consider the effective velocity calculated
by subtracting the turbine–induced perturbation by
BIEM from the total velocity distribution in the hybrid
DES/BIEM solution. In this case, by a calculation not
shown here, a mean effective axial velocity component
Veq = 0.93V0 is found. As expected, this value is higher
than the u1 component in Table IV, as effect of the
turbine perturbation that decelerates the flow. More-
over, the found Veq value is in agreement with mean
velocity results obtained in [18] where an equivalent
computational grid was used for the turbulent flow
simulation with no turbine perturbation.

The 7% defect of the axial velocity incoming to
the turbine is primarily responsible for a variation
of turbine blade loading as compared with the zero
inflow turbulence case. Figure 14 presents the time
history of turbine thrust and power coefficients pre-
dicted by BIEM for the 16% and zero inflow turbulence
conditions. Results are normalized with respect to the
mean values CT0 and CP0 at convergence of the zero
inflow turbulence case. The turbulent front generated
from computation start, takes about 220 time steps to
reach the turbine region. The occurrence of thrust and
power fluctuations as the turbulent flow impinges on
the turbine blades is apparent. A reduction of both C

T

and C
P

mean values with respect to the zero inflow
turbulence case is observed, due to the lower intensity
of the effective inflow speed Veq as described above.
Figure 14 also presents modified thrust and power
coefficients calculated by replacing the nominal inflow
speed V0 with the effective velocity Veq in the non
dimensional expressions given by Eq. (11).
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Fig. 14. Turbine in 16% turbulent flow, λ = 5. Time history of turbine
loads predicted by BIEM and comparison with results in the zero
inflow turbulence conditions. Top: thrust coefficient; Bottom: power
coefficient. Normalized data with respect to mean values CT0 and
CP0 in the zero inflow turbulence case.
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Fig. 15. Turbine in 16% turbulent flow, λ = 5: the λ2 iso–surface colormap describes the vorticity intensity at a representative time step.

It is interesting to observe that modified thrust and
power coefficients fluctuate around mean values that
are very close to those obtained under zero inflow
turbulence conditions. Specifically, in the turbulent case
thrust and power fluctuations are within, respectively,
15% and 25% of uniform flow values, whereas mean
thrust and power are, respectively, 2% and 3% higher
than in uniform flow conditions. This would confirm
a well known result from experimental as well as CFD
studies that onset flow turbulence may have a signif-
icant impact on turbine loading fluctuations whereas
averaged values are marginally affected. However, the
BIEM solver has a limited capability to describe the
complex phenomenology of the impact of turbulent
eddies on the surface of blades, and hence present
results should be taken as a qualitative information.

Figure 15 depicts the λ2 iso–surfaces with colormaps
representing the intensity of magnitude vorticity. The
mapped fluid region corresponds to the turbulence
generation block (on the right) and the turbulence
control block (Fig. 3) with a quarter portion removed to
show the flow inside the block. This flow visualization
can be compared with the corresponding one in the
zero inflow turbulence case, Fig 11. The turbulence
generation region is clearly identified by strong vortic-
ity levels whose intensity rapidly reduces as the eddies
are convected downstream. In the rotor plane region,
the footprints of two of the three blades are visible,
whereas the third blade is hidden by the structures in
the flow. Comparing the 16% and zero turbulence flow
fields, the impact of incoming eddies on the turbine
trailing vorticity pattern is apparent. In particular, the
regular helicoidal tip vortex path in the zero turbulence
case is corrupted under the interaction with eddies in
the flow.

A direct comparison between solutions with zero
and 16% turbulence intensity in the flow incoming to
the turbine is presented in Fig. 16, where the distri-
bution of the λ2 quantity along the longitudinal plane

x2 = 0 for a representative time step is plotted. The
turbulent flow case is in the top half plane, and the
zero–turbulence flow case is in the bottom half plane.
The edges of main grid blocks are shown (see Fig. 3).
The flow is directed left to right. On the left side, the
turbulence generation block is clearly identified with
a thin vertical layer where eddies are generated. The
intensity of structures reduces between the first and
the second partition of the control block. The turbine
position is identified by the nacelle surface and by the
rotor grid block where the volume forces simulating
blade loads are distributed. Tip vortices are shed at
the downstream edge of the rotor grid block, and in
the zero turbulence case evolve into a regular path of
coherent structures. A quite different phenomenology
can be observed in the turbulent flow case, where the
tip vortex path is rapidly distorted, as argued from
Fig 15 above. Furthermore, vortex cores are smeared
into relatively large regions with lack of regularity of
the axial spacing among each other. Similar effects
are observed in the nacelle wake. This is an effect
of the interaction with turbulent eddies in the flow,
with higher vorticity diffusion and viscous dissipation
than in the smooth, zero turbulence flow case. The
differences in the wakefield are apparent also in Fig. 17,
where normal planes at the rotor plane x1 = 0, and
downstream of it, x1 = 0.5D and x1 = D are plotted.
The zero–turbulence case is on the left side and the 16%
turbulence case on the right side. From these views,
the loss of coherence of the tip vortices is apparent. In
particular, moving from the rotor plane to downstream,
the eddies entrained into the streamtube are attracted
towards the tip–vortex region and towards the nacelle
wake, as effect of the velocity induced by vortices shed
at blade tip and root.

A quantitative comparison of velocity intensity in the
turbine wake for the zero and 16% turbulence cases is
presented in Fig. 18, where the non–dimensional axial
component u1/V0 and vertical component u3/V0 for
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Fig. 16. Turbine wake flow, λ = 5. λ2 distribution in the longitudinal
plane x2 = 0. Solution with I∞ = 0.16 turbulent flow (top half
plane) and in the zero–turbulence case (bottom half plane).

Fig. 17. Turbine wake flow, λ = 5. λ2 distribution in normal plane
at constant x1. Solution with I∞ = 0.16 turbulent flow (right) and
in the zero–turbulence case (left). Top to bottom: x1/D = 0, 0.5, 1.

constant radius positions r/R = 0.7, 1.0, 1.1 between
x1 = 0 (rotor plane), and x1 = 1.7D are plotted.
The oscillations of the velocity intensity (notably, the
radial component) confirm the regularity of the tip–
vortex path in the zero turbulence case that in the
16% turbulence case, is broken under the effect of the
travelling eddies.

Fig. 18. Turbine wake flow, λ = 5. Non–dimensional axial velocity
u1/V∞ and vertical velocity u3/V∞ at radial positions r/R =
0.7, 1.0, 1.1 (top to bottom). Results for I∞ = 0.16 and zero–
turbulence cases compared.

The description of the flow field including turbu-
lence generation and turbine–induced perturbation is
completed by analyzing the divergence of the velocity
field. Figure 19 shows the non–dimensional divergence
∇·u at a representative time step at control block points
at x2 = x3 = 0. Pointwise values are averaged over a
5×5 grid cell stencil. The largest values are observed in
the region between the generation block and the rotor
block, with a peak value of 0.014 at the rotor plane
position x1 = 0. In the other flow regions, relatively
small values are obtain, and it can be concluded that
the divergence–free condition is fairly satisfied in the
numerical solution.

Fig. 19. Turbine wake flow, λ = 5. Non–dimensional divergence of
the velocity field at representative time step and control block points
at x2 = x3 = 0.

D. Turbulence metric analysis
In this section, some results of a statistical analysis on

the calculated velocity field are presented. In particular,
key turbulence metric quantities are evaluated with
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respect to the four sub–blocks in which the control grid
block is splitted, as shown in Fig. 13. Recalling a hybrid
DES/BIEM model is used, the perturbation induced
by the turbine in sub–blocks 1 and 2 presents an irro-
tational flow nature, with pressure increase and flow
deceleration as the distance from the rotor disc reduces.
A completely different phenomenology is expected in
sub–blocks 3 and 4 downstream of the rotor disc, where
vortical structures and shear layers generated on blade
and nacelle surfaces are shed into the wake.

Power Spectral Density (PSD) distributions are pre-
sented to analyse the physical consistency of the calcu-
lated turbulent flow. Results for the PSD at probes P1

to P4 are presented in Fig. 20 where the Kolmogorov
k−5/3 law is plotted as reference. At probes P1 and P2,
the spectrum follows a white noise behaviour in the
low frequency range. This can be explained recalling
the onset flow turbulence is generated at relatively
small distance from these probes by forcing terms with
stocastic intensity and distribution, as described in
section II. In this region, a kinetic energy decay with
a −5/3 slope is found only in a very narrow range
around 10 Hz. A much wider region with a −5/3
slope in the sub–inertial frequency range is observed
at probes P3 and P4 that fall within the nacelle wake,
where the onset flow structures interact with the tur-
bulence generated by the nacelle boundary layer.

Fig. 20. Turbine in 16% turbulent flow, λ = 5. Kinetic energy Power
Spectral Density (PSD) at probes Pi with i = 1 to 4, left to right, top
to bottom.

Finally, the isotropy of the velocity field is analysed.
Following [23] and [34], the invariants of the tensor
S related to the correlation tensor R by the expression
Sij = Rij(0)−1/3Rii(0)δij are considered. In particular,
the isotropy of a random signal can be investigated
by considering the second and third invariant, re-
spectively, II = 1/2[(Sii)

2 − S2
ii] and III = det(S).

By mapping events in the (II, III) plane, a perfectly
isotropic signal is characterized by II = 0 and III =
0. Figure 21 presents the results of this analysis by
considering flow conditions at the four probes Pi for
20 representative time steps after the turbulent front

has crossed the near wake region represented by sub–
blocks 3 and 4 in Fig. 13. The time steps are indicated
by the different colors. The two curves converging to
the origin of the (II, III) plane delimit the feasible
region. Moving from probe P1 to P2, the onset tur-
bulent flow tends to isotropy, whereas this condition
is broken donwstream of the rotor plane, at probes P3

and P4 that are immersed into the nacelle wake. In
particular, just downstream of the nacelle tail (probe
P3), the phenomenology is typical of a Log–law flow
region associated to the nacelle boundary layer [34],
whereas moving to probe P4 a trend to partially recover
an isotropic behaviour is noted.

Fig. 21. Turbine in 16% turbulent flow, λ = 5. Isotropy diagrams by
using Sij tensor invariants II, III from [34]. Top to bottom, left to
right: probes 1 to 4. The colormap marks samples at increasing time
steps.

VI. CONCLUSIONS

A computational methodology to simulate the oper-
ation of hydrokinetic turbines in turbulent onset flows
has been presented. The turbulence is generated by
a random distribution of volume force terms in the
right–hand side of the Navier–Stokes equations. A
control strategy is used to enforce that the perturbation
determines flow conditions that are representative of
prescribed turbulent flow conditions. The numerical
solution of the Navier–Stokes equations is obtained
by a hybrid viscous/inviscid formulation in which a
Boundary Integral Equation Method (BIEM) is used to
predict the perturbation induced by a turbine, whereas
the surrounding viscous flow is described by Detached
Eddy Simulation (DES). BIEM and DES solvers are
strongly coupled with turbine blade loading by BIEM
recast as volume forces in the DES solver.

The results of a numerical application describing a
horizontal–axis turbine in a 16% turbulent onset flow
have been discussed. In spite of the limited scope of the
study, with only one turbine operating condition ad-
dressed, the analysis allows to draw some conclusions.
Downstream of the generation region, the turbulent
stream tends to achieve isotropy conditions, with a tur-
bulence intensity 19% lower than the imposed value.
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A better agreement could be obtained by adopting a
more sophisticated control strategy than the simple
PID used in the present analysis. The volume force
distribution imposed to generate turbulence in the
flow behaves like a physical obstacle and determines a
velocity defect downstream of the generation region. In
the present case, a 6.7% reduction of the axial velocity
incoming to the turbine plane has been measured. This
results into lower turbine thrust and power than in
zero turbulence conditions. The interaction between
blades and incoming eddies determines thrust and
power fluctuations that are, respectively, 15% and 25%
of the corresponding values in zero turbulence con-
ditions. As expected, if thrust and power coefficients
are scaled with respect to the actual inflow speed,
their mean values are very close to those calculated in
zero turbulence conditions. The analysis of the Power
Spectral Density has shown that the kinetic energy
spectrum is largely affected by the definition of the
random distribution of the turbulence generation forc-
ing terms. However, in the turbine wake, the inter-
action among incoming eddies and turbine–generated
structures tends to establish conditions that are rep-
resentative of real turbulent flows. Another important
finding is that the calculated flow field including tur-
bulence generation and turbine–induced perturbation
fairly satisfies the divergence–free condition for incom-
pressible flows.

Ongoing work is dedicated to investigate the effects
of numerical aspects like the computational grid re-
finement, and the definition of turbulence generation
forcing terms. The simulation of a range of turbine
operating conditions is also in progress. The objective
is to assess the capability of the proposed methodology
as an engineering tool that can be used to predict
the performance of single turbines and arrays in the
turbulent flow climates of real tidal sites.
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