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Control co-design and sensitivity analysis of
the LUPA’s PTO using WecOptTool
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Abstract—Control co-design has been shown to signifi-
cantly improve the performance of wave energy converters
(WEC). By considering the control strategy and WEC design
concurrently, the space searched by the optimization rou-
tine is greatly expanded which results in better performing
devices. Recently, we released an open-source WEC co-
design code, WecOptTool, to perform control co-design
analysis and facilitate its adoption in the community. In
this study, we use WecOptTool to perform control co-
optimization and uncertainty analysis of the Laboratory
Upgrade Point Absorber (LUPA) device. The LUPA can
be adjusted to different configurations, including inter-
changing the drive sprocket. The drive sprocket diameter
influences the torque vs speed of the generator, which
allows for more flexibility in operating under different
wave conditions or with different control schemes. In
this study we optimize the drive sprocket diameter, while
considering the optimal control algorithm for each poten-
tial design, to identify the optimal diameter for electric
power production at the PacWave South WEC test site. The
power take-off system’s (PTO) dynamics are modeled using
first principle methods for a parameterized model of the
mechanical sub-components in combination with generator
model obtained using a power-invariant Park transform.
The case-study will be made available to serve as a design
tool along the LUPA hardware. Users can readily use this
model to perform their own design optimization prior to
testing with the physical LUPA device. Finally, we use
the automatic differentiation capability of WecOptTool to
perform a sensitivity analysis of the power production with
respect to the different PTO design parameters.

Index Terms—Control co-design, Sensitivity analysis, De-
sign optimization, Wave energy converters

I. INTRODUCTION

CONTROL co-design has been shown to signifi-
cantly improve the performance of wave energy

converters (WEC) designs [1]–[5]. In this design opti-
mization framework, the controller is optimized simul-
taneously with all the WEC and power take-off (PTO)
parameters of interest. This differs from the sequential
approach, which prematurely locks in WEC geometry
and power take-off before the control algorithm is
optimized. The open source code WecOptTool1 was
recently released to allow for easy control co-design
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Fig. 1. LUPA WEC: picture (left) with a person for scale, and
rendering (right, reproduced with permission from [6]) identifying
main components.

of WECs and accelerate the adoption of this design
approach in the WEC community.

This paper presents a co-design and sensitivity study
of the Laboratory Upgrade Point Absorber’s (LUPA)
PTO. LUPA is a laboratory scale WEC developed by
Oregon State University as a cost-effective and modu-
lar platform for analysing and validating WEC geome-
try, PTO, and control schemes [6]. The objectives of this
study are (i) to demonstrate the use of WecOptTool for
design optimization of a real-world application with
realistic constraints, (ii) to perform, and demonstrate
the approach for, sensitivity analysis and uncertainty
quantification using the automatic differentiation ca-
pabilities of WecOptTool, and (iii) to provide this case
setup to future users of LUPA as a design tool they can
use prior to tank testing.

A. LUPA Device

LUPA, shown in Fig. 1, is a scaled open-source WEC
designed, fabricated, and tested by Oregon State Uni-
versity [6]. It provides a cost-effective, robust research
and development platform for analyzing concepts,
validating numerical models, and innovating control
schemes in a controlled environment. The base design
is a two body point absorber, with the ability to test one
or two bodies and to lock-in certain degrees of freedom
(e.g. heave-only test). The LUPA also has the ability to
exchange different sprockets in the drive-train.

In this study we focus on the LUPA’s PTO. For its
power transmission system, LUPA uses components
manufactured by Gates Corporation. The PTO design



288–2 PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3–7 SEPTEMBER 2023, BILBAO

Fig. 2. Rendering of the LUPA’s power take-off system with labeled
components (reproduced with permission from [6]).

TABLE I
PTO PARAMETERS

Parameter Symbol Value

Sprocket diameter Ds 0.127m

Sprocket mom. of inertia Ms 0.006 03 kgm2

Pulley diameter Dp 0.108m

Pulley mom. of inertia Mp 0.005 02 kgm2

Generator mom. of inertia Mg 0.017 86 kgm2

Generator winding resistance Rg 5.87Ω

Generator winding inductance Lg 0.0536H

Generator torque constant τg 8.51Nm/A

is shown in Fig. 2 and consists of a belt-driven sys-
tem with a sprocket and two idler pulleys. The two
idler pulleys are Gates 4.25X2.00-IDL-FLAT, the default
sprocket is the Gates 8MX-50S-36, and the generator is
model ADR220-B175 by Akribis Systems. The relevant
parameters for the PTO model are listed in Table I.

Together with the physical LUPA device, the project
specifies different sets of test waves. For each of two
locations, four wave conditions are specified for a total
of 8 test waves. The two locations are the US DOE
PacWave North and PacWave South sites, where a
scaling factor of 20 is used for the North site and 25
for PacWave South. The four conditions correspond
to the 90th percentile, the maximum percent annual
energy, the maximum occurence, and the 10th per-
centile. In this study we use the max occurence wave
at PacWave South, which correspond to tank waves
with a Pierson—Moskowitz spectra with (1:25 scale)
significant wave height of 0.07m and peak period
1.90 s.

B. WecOptTool
The WecOptTool is a WEC control co-design tool

implemented as two nested optimization loops. The
inner loop finds the optimal (structured or unstruc-
tured) controller using a pseudo-spectral method [1],
[5], [7], [8] while enforcing the dynamic equations and
any additional arbitrary constraints in the time domain.
The inner loop problem is

min
x

J(x)

s.t.
r(x) = 0

cineq(x) ≥ 0

ceq(x) = 0,

(1)

where x is the state vector which includes the WEC
dynamics and controller parameters, J(x) is the ob-
jective function (e.g., average electrical power output),
r(x) captures the WEC dynamics in residual form,
and ceq and cineq are arbitrary equality and inequality
constraints (e.g., maximum line tension or maximum
PTO force). The optimal controller can be unstruc-
tured, i.e., an arbitrary time-series represented by its
Fourier coefficients, or structured, e.g. a PID controller
represented by three scalar gains. WecOptTool uses
automatic differentiation [9] to solve this inner op-
timization problem using gradient descent. Gradient
descent is the most efficient way to explore the design
space, if the function is well behaved and gradients
are obtainable, since it uses the gradient information
to efficiently find optimal solutions.

In this study we consider the unstructured controller
for the PTO force and linear WEC dynamics equations.
The linear dynamic equations can be written in the
time (t) domain in residual form as

r(t) = Mẍ−
∑

f(t)

= Mẍ− fr(t)− fh(t)− ff (t)− fe(t)− fa(t)

= 0,

(2)

where M is a mass/inertia matrix, ẍ the WEC acceler-
ation vector, and the different generalized force vectors
are the radiation force fr due to wave generation, the
hydrostatic force fh, the hydrodynamic frictional force
ff , the wave excitation force fe, and any additional
forces fa such as PTO force and mooring forces. For
a full description of how these terms are modelled,
please refer to [1]. The specific additional forces used
in this study are described in Section II.

The outer optimization loop considers all other de-
sign parameters. These can include WEC geometry
parameters as well as PTO parameters. The optimiza-
tion algorithm is implemented by the user and can
be as simple as a brute force or grid optimization.
Alternatively, any gradient-free optimization technique
can be used.

II. METHODOLOGY

The LUPA has several modular components that can
be modified, including the number of bodies (1 or 2),
the float geometry, the number of degrees of freedom,
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the PTO sprocket, and control algorithm. The sprocket
diameter affects the speed vs torque of the generator
which can have a large effect on the performance
of the device under different wave conditions and
control algorithms. In this study we perform a PTO
control co-design where we find the optimal sprocket
diameter while considering the optimal controller for
each design. We also look at the sensitivity of LUPA’s
performance with respect to all the different PTO pa-
rameters.

The WEC dynamic equations are the linear WEC
dynamic equations described in Section I-B. We con-
sider two additional forces, the PTO force fp and the
mooring force fm, as

fa = fp + fm. (3)

The device is modeled in planar motion, with four
degrees of freedom: float heave, spar heave, combined
surge, and combined pitch. We use the maximum
occurrence wave at PacWave South with the 1:25 scale
defined by the LUPA project, which corresponds to
an irregular wave with Pierson–Moskowoitz spectra
with significant wave height of 0.07m and peak period
1.90 s. We use an unconstrained controller with the PTO
force time series (Fourier coefficients) as the control
state. The control state is part of inner optimization
state, and is therefore arbitrary. The objective function
is the average electrical power.

A. PTO model
The objective function is the average electrical power,

which means we must model the power conversion
chain from PTO force to electricity. The PTO is modeled
using 2-port modelling techniques to connect the PTO
mechanical and electrical sub-components [10] and
a power-invariant Park transform for the generator
model (see [1] for more details on the linear PTO
model). The linear PTO model can be written based on
an impedance that relates the frequency-domain PTO
force F̂p and voltage V̂ to the velocity Û and current
Û as F̂p(ω)

V̂ (ω)

 = Z(ω)

Û(ω)

Î(ω)

 . (4)

The components of the PTO impedance matrix Z given
as

Z1,1(ω) = iω

(
−4

D2
s

)(
Mg +Ms + 2

D2
s

D2
p

Mp

)
(5a)

Z1,2(ω) = Z2,1 = −2
√
6
τg
D2

s

(5b)

Z2,2 = iωLg +Bg. (5c)

Here we used the model in [1] with drive-train friction
and stiffness both zero, and with drive-train inertia Md

and gear ratio Nd given by

Md = Mg +Ms + 2
D2

s

D2
p

Mp, (6a)

Nd =
2

Ds
, (6b)

based on the drive-train design (Fig. 2, Table I).

B. Objective function
The impedance matrix can be rearranged into ABCD

form to give current and voltage as functions of WEC
velocity and PTO Force, which we represent in our
state vector. The resulting Fourier coefficients represent
the time-series of voltage and current, v(t), i(t). We
then use the average electrical power as the objective
function. The average power is given as the time
integral of the product of voltage and current as

J(x) =
1

tf

∫ tf

0

v(t)i(t)dt ≈ 1

Nt

Nt−1∑
n=0

v(tn)i(tn). (7)

We note that this power is the rate at which the
generator is doing work. Electrical power extracted
from the system corresponds to a negative average
power, which is minimized through (1) to obtain the
most power out of the system.

C. Constraints
One of the key features of the pseudo-spectral

method in WecOptTool is that you can enforce arbi-
trary non-linear constraints on the system. The method
finds the optimal control strategy to maximize the
objective function while respecting the dynamics and
constraints. In this study we enforced four realistic
constraint based on the LUPA’s experimental setup
and component specifications. The constraints are as
follows:

• PTO stroke: The PTO stroke is the relative heave
motion of the float and spar and is physically
limited to 0.5m. This limit should be enforced as
a soft constraint using the controller, and hence
the end-stop dynamics are not directly modeled.
Instead, this is specified as a constraint to the
pseudo-spectral method (1).

• Peak generator torque and speed: The genera-
tor manufacturer specifies a maximum torque of
137.9Nm and speed of 15.7 rad/s.

• Continuous torque: The generator also has a
continuous (RMS) torque rating of 46Nm. This
is enforced as an upper limit on the root-mean-
square (RMS) value of the torque time-series.

D. Mooring
The LUPA setup uses a 4-line taut mooring system

with springs connecting the spar to the wall of the
wave flume (Fig. 1, left), with a pretension of 285N and
a line stiffness of 963N/m. Since seabed interactions
are not relevant for this mooring system, the elastic
catenary equation can be used to represent the motion
of the line, which can be represented in the classic
equation given by Irvine [11]:

l =
HL0

EA
+

HL0

W
[sinh−1(

V

H
)− sinh−1(

V −W

H
)] (8a)

h =
WL0

EA

[
V

W
− 0.5]

]
+

HL0

W

[√
1 + (

V

H
)2 −

√
1 + (

V −W

H
)2

] (8b)
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where l and h are the stretched horizontal and vertical
lengths of the mooring line, respectively; H and V are
the horizontal and vertical tension components of the
line at its fairlead, respectively; L0 is the unstretched
line length, W is the wet weight of the line, and EA is
the extensional stiffness of the line.

Typically, the differential changes of H and V with
respect to l and h can be solved via an iterative nu-
merical solution. However, if we assume the mooring
system is symmetric, has no slack in the lines, and
the line material and cross sections are linear, the
stiffness of the mooring system can be assumed to
be at the optimal stiffness KI = EA/L0. If we also
assume the wet weight of the mooring lines are small
compared to the LUPA device, the catenary equation
simplifies to an analytical solution given by Al-Solihat
and Nahon, which captures nonlinear effects and off-
diagonal terms of the mooring stiffness matrix without
any significant increase in computational time over
the typical linear spring representation of mooring
restoring force [12].

The resulting mooring stiffness matrix from [12]
abridged to the four planar degrees of freedoms (buoy
heave, spar heave, combined surge, and combined
pitch) as in this model is given as:

Km =


K11 0 0 K15

0 K33b 0 0

0 0 K33s 0

K51 0 0 K55

 (9)

where

K11 =
1

2
n

[
T

L
(1 + sin2 α) +KI cos

2 α

]
(10a)

K15 = −n[
T

2L
(D +D sin2 α+R sinα cosα)

+
KI

2
(D cos2 α−R sinα cosα)]

(10b)

K51 = K15 (10c)
K33b = 0 (10d)

K33s = −n

[
T

L
cos2 α+KI sin

2 α

]
(10e)

K55 = −n{T
(
D sinα+

1

2
R cosα

)
+

T

2L
[(R cosα+D sinα)2 +D2]

+
KI

2
(D cosα−R sinα)2}

(10f)

where D and R are the vertical and horizontal dis-
tances from the device center of gravity to the fair-
lead respectively; n is the number of mooring lines
connected, L is the stretched line length, T is the
pretension and α is the angle of the mooring lines
above the mudline. Refer to [12] for the full derivation
of the stiffness matrix.

E. Outer loop
The outer optimization loop considers the different

possible sprockets and optimizes for electrical power.

Fig. 3. Manufacturer drawings of the different sprocket shapes.
Image reproduced from the 2011 Gates Drive Design Manual.

Table II shows the full list of 22 possible Gates sprock-
ets that can be used with LUPA and Fig. 3 shows the
different sprocket shapes. The PTO model will use both
the sprocket diameter and its moment of inertia, so
given the predefined manufacturer designs, these two
parameters cannot be considered independently. The
sprocket diameter is not the only geometric change
between the 22 designs (Fig. 3), making the diameter
and moment of inertia have no relationship. However,
as will be shown later, the effects of the diameter
dominate and an optimal radius can be inferred from
the results. The outer optimization loop consists of
a brute force sweep through the 22 possible designs
(diameter-inertia pairs).

F. Automatic differentiation
Automatic differentiation is a technique for obtaining

gradients of code outputs with respect to some input
or parameter. Based on the chain rule and the known
derivatives of elementary functions, a computational
graph can be built for the desired gradient or Jacobian.
The Jacobian function has a computational cost in the
order of the computational cost of the main function
O(f), and does not scale with number of inputs. This is
a huge advantage over numerical gradients which has
a cost in the order of nO(f), i.e. it scales with number of
inputs n. Since the pseudo-spectral problem can have
hundreds of inputs, WecOptTool was built on top of a
differentiable programming framework, autograd [9].

One advantage of this is that we are not limited to
using the automatic differentiation just for solving the



MICHELÉN STRÖFER et al.: CONTROL CO-DESIGN AND SENSITIVITY ANALYSIS OF THE LUPA’S PTO USING WECOPTTOOL 288–5

TABLE II
POSSIBLE SPROCKETS FOR THE LUPA PTO.

Model Design
Diameter

[m]

Mom. of inertia

[kgm2]

8MX-32S-36 AF-1 0.0815 0.000843

8MX-33S-36 AF 0.0840 0.000927

8MX-34S-36 AF-1 0.0866 0.00110

8MX-35S-36 AF 0.0891 0.00122

8MX-36S-36 AF-1 0.0917 0.00135

8MX-37S-36 AF 0.0942 0.00164

8MX-38S-36 AF-1 0.0968 0.00169

8MX-39S-36 AF 0.0993 0.00202

8MX-40S-36 AF-1 0.102 0.00206

8MX-41S-36 AF 0.104 0.00240

8MX-42S-36 AF-1 0.107 0.00257

8MX-45S-36 AF-1 0.115 0.00379

8MX-48S-36 AF-1 0.122 0.00480

8MX-50S-36 AF-1 0.127 0.00603

8MX-53S-36 AF-1 0.135 0.00712

8MX-56S-36 AF-1 0.143 0.00931

8MX-60S-36 AF-1 0.153 0.0148

8MX-63S-36 AF-1 0.160 0.0234

8MX-67S-36 DF-1 0.171 0.0129

8MX-71S-36 DF-1 0.181 0.0154

8MX-75S-36 DF-1 0.191 0.0178

8MX-80S-36 BF-1 0.204 0.0507

pseudo-spectral problem (1) but can use it to look at
different sensitivities in our design. In this study we
look at the sensitivity of the objective function, average
electrical power, to the different PTO parameters. The
sensitivity of the power P with respect to a parameter
Q is ∂P

∂Q and the normalized sensitivity is ∂P
∂Q

Q0

P0
, where

P0 = −1.42W is the average electrical power of the
default design and Q0 is the default parameter value.
The default parameter values are given in Table I.

III. RESULTS

This section presents two different studies. In Sec-
tion III-A, we use automatic differentiation to look
at the sensitivity of the average power at the default
design with respect to the eight PTO parameters in
Table I. In Section III-B, we solve the full control co-
design problem to find the optimal sprocket, out of the
22 options in Table II. This finds the optimal sprocket
(outer loop) while considering the optimal controller
(inner loop) for each design. An accompanying Jupyter
notebook2 is available to reproduce all these results.

A. Sensitivity analysis for default design
Quantifying the default design’s sensitivity to the

eight PTO parameters (Table I) requires a function
that takes the PTO as input and returns the average
electrical power as output. This function first creates
the PTO impedance matrix (5) and then solves the

2Notebook: https://github.com/cmichelenstrofer/EWTEC 2023

TABLE III
SENSITIVITY OF THE AVERAGE ELECTRICAL POWER TO THE EIGHT

PTO PARAMETERS, AT THE DEFAULT DESIGN.

Parameter Sensitivity
Sensitivity

(normalized)

Sprocket diameter 7.90 W
m

-0.708

Sprocket mom. of iner-
tia

0.170 W
kgm2 −0.000722

Pulley diameter −0.0441 W
m

0.00335

Pulley mom. of inertia 0.473 W
kgm2 −0.00167

Generator mom. of in-
ertia

0.170 W
kgm2 −0.00214

Generator winding re-
sistance

0.0864 W
Ω

−0.357

Generator winding in-
ductance

2.92× 10−16 W
H

−1.10× 10−17

Generator torque con-
stant

−0.119 W
Nm/A

0.714

objective function (7). All other results are frozen,
including the solution to the pseudo-spectral problem
(1), i.e., the dynamics and optimal controller time-
series. Using the autograd package [9] we then create
gradient functions and evaluate them at the default
design values. The raw and normalized results are
presented in Table III.

Since we want power out of the system (negative
power) a positive value of the normalized sensitivity
indicates a larger value for that parameter is desirable.
We are interested in the effect of the sprocket and can
see from Table III that a smaller diameter and smaller
moment of inertia would result in larger usable power.
We can also see that the effect of the moment of inertia
is several orders of magnitude smaller than the effect
of changing the diameter. Therefore, even though there
is no relation between the diameters and moment of
inertia of the different sprockets, we can ignore the
effect of moment of inertia and draw conclusions on
the optimal diameter. This is done in the next section.

The sprocket diameter directly determines the gear
ratio (6b) which affects the torque vs. speed of the gen-
erator and it was expected to have a very large effect
on power, as confirmed by the sensitivity analysis. The
results show that a smaller diameter is desirable, which
corresponds to a larger gear ratio and the generator
operating at faster speeds and lower torque. Lower
torque requires less current which translates to less I2R
losses. The results also show that the power is not very
sensitive to the drive-train’s moment of inertia, but a
smaller moment of inertia would be preferable. From
(6a) this corresponds to smaller moment of inertia
of each component (Mg , Ms, Mp) and larger pulley
diameter (Dp), which correspond to the results of the
sensitivity analysis.

We can also see that the average power is sensitive to
the generator’s winding resistance and torque constant,
and is not sensitive at all (effectively zero) to the wind-
ing inductance. The winding impedance (5c) depends
on both the winding resistance Bg and the winding in-
ductance times the frequency ωLg . The winding induc-
tance Lg is much smaller than the winding resistance
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Fig. 4. Results of the sprocket optimization with respect to both
sprocket diameter and moment of inertia.

and the frequencies of ocean waves are small explain-
ing its low sensitivity. The driving electrical losses in
the PTO model are the I2R losses which increase with
the winding resistance and current. Current is inversely
proportional to the torque constant, explaining why a
generator with a larger torque constant and a smaller
winding resistance would be expected to produce more
power as indicated by the signs of their respective
sensibilities in Table III. On a practical note, reducing
a generator’s winding resistance, or independently
increasing it’s torque constant are not trivial tasks. A
highly efficient generator is usually very costly and the
results illustrate that more cost effective improvements
can be achieved by ensuring that all components are
well coordinated to achieve in phase overall power
transfer.

The gradients in Table III can also be used to estimate
uncertainty in the physical experiments. As a simple
example, if the sprocket diameter can only be measured
up to ∆Ds = ±1mm (0.787%), this leads to an uncer-
tainty in the average power of ∂P

∂Ds
∆Ds = ±0.0079W

(0.556%).

B. Sprocket optimization
We are interested in which sprocket, among the list

of possible sprockets (Table II) leads to the most power
production with the PacWave South maximum occur-
rence wave. For this we do a brute force optimization
looping through each possible sprocket and solving the
pseudo-spectral problem for the optimal controller for
each. The results are plotted in terms of both diameter
and moment of inertia in Fig. 4, and in terms of only
diameter in Fig. 5. As expected from the sensitivity
analysis, the optimal diameter is smaller than the de-
fault, and is actually the lower limit of the range of
diameters the LUPA takes. The optimal sprocket is the
8MX-32S-36 with a diameter of 0.0815m.

Fig. 5 also shows the gradient (red, dashed lines) of
power with respect to sprocket diameter at the default
design (with sprocket 8MX-50S-36). This corresponds
to the value in Table III of 7.90W

m . It can be seen that
this is in fact the tangent and a very accurate local

0.08 0.10 0.12 0.14 0.16 0.18 0.20
Sprocket diameter [m]

1.8

1.6

1.4

1.2

1.0

Po
we

r [
W

]

Fig. 5. Results of the sprocket optimization with respect to sprocket
diameter.

approximation. This is because although the moment
of inertia is also changing, its effect is orders of mag-
nitudes smaller than that of diameter.

IV. CONCLUSIONS

The LUPA is a testing platform with many possible
configurations and modifications that make it a great
tool for researchers. The main PTO component that can
be easily swapped is the sprocket. In this study we
showed how to use WecOptTool to perform control co-
optimization of the sprocket, in order to identify the
sprocket that results in the largest average electrical
power produced in a specific sea state. Since WecOpt-
Tool is built on top of an automatic differentiation
platform, we are able to obtain different sensitivities
of the design. We used this capability to determine
the sensibility of electrical power to each of the eight
PTO parameters in the linear PTO model for the LUPA.
These sensitivities can be useful not only for informing
design modifications, but also for uncertainty quan-
tification. For instance, given some uncertainty in any
of the PTO parameters (e.g., based on the measure-
ment technique) this can then be propagated to an
uncertainty in the power production. In addition to
demonstrating the use of automatic differentiation for
sensitivity analysis, we hope this case study serves as
a tool that researchers can use to run optimization and
sensitivity studies prior to testing the physical LUPA
device. To this end we have made this case study
available as a Jupyter notebook.
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