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Parametric resonance: a risk to be avoided or
an opportunity to be exploited? A case for a
2:1 wave energy converter

Giuseppe Giorgi

Abstract—A common challenge that unites all players in
the wave energy conversion field, both on the academic and
industrial sides, is the struggle to increase the converted
power output. Along this journey, if devices are discovered
prone to parametric resonance, it is usually detrimental
for power extraction and potentially threatening the device
integrity. In this paper, it is argued that, rather than a risk to
be avoided, parametric resonance can be an opportunity to
be exploited, to widen the response bandwidth of the sys-
tem and, ultimately, making more energy available at the
power take-off shaft. Since parametric resonance is a highly
nonlinear phenomenon induced by time-varying wetted
surface, linear models are blind and inept to articulate such
an instability. Therefore, nonlinear Froude-Krylov forces
are herein implemented, via a computationally convenient
approach available for prismatic floaters, that is compati-
ble with real-time computation and exhaustive simulation
approaches. A pendulum-based device is considered, pur-
posely designed to exhibit a 2:1 ratio between heave and
pitch natural frequencies, which triggers parametric insta-
bility. Results show that, as expected, linear models predict
a single region of significant potential power extraction
close to the pitch natural frequency; conversely, leveraging
the designed attitude to develop parametric instability, a
second additional region appears close to the heave natural
period. Therefore, the free response bandwidth is indeed
enlarged, becoming a more fertile baseline for energy-
maximising nonlinear control strategies.

Index Terms—Wave Energy Converter, 2:1 Parametric
Resonance, Nonlinear Froude-Krylov force, Parametric in-
stability, Nonlinear Dynamics.

I. INTRODUCTION

ESPITE significant technological advances in re-

cent years, the wave energy field still faces the
major challenge of reducing the Levelised Cost of En-
ergy (LCoE) to become competitive with other forms of
renewable energy and appealing to public and private
investors [1], and eventually contribute to the decar-
bonization of energy systems [2]. On the one hand, ef-
fort is directed towards the reduction of capital and op-
erational expenditures: techno-economic optimisations
[3] are based on cost functions that, although difficult
to be estimated due to a still immature industry [4], are
becoming increasingly representative and informative
of the real system thanks to bottom-up approaches
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[5]. On the other hand, the complementary route to
LCoE reduction is to increase the overall productivity
[6], especially broadening the frequency bandwidth of
the device such that it performs well in a wide set of
wave conditions [7], and reaches a high capacity factor
[8]. The prime tool to increase the energy extraction,
especially away from the natural frequency of the
system, is optimal control: usually by means of the
Power Take-Off (PTO), the control strategy applies an
action that intends to modify the free response of the
device to achieve the control objective, which normally
includes the converted energy.

Figure 1 presents a notional representation of the
power extraction of a generic heaving point absorber
Wave Energy Converter (WEC), highlighting the base-
line of free response with proportional passive control,
i.e. a static damping coefficient that simply extracts
energy and is not able to significantly modify the
dynamics of the WEC. Budal’s limits are also repre-
sented in order to draw a benchmark of the maximum
convertible power due to physical limits [9]. Under
ideal conditions where the PTO action can be arbitrary
chosen by the control strategy, optimal control can
virtually modify the system dynamics to any extent
required to optimise performance; Figure 1 shows that
optimal control with loose (or no) constraints enables
a large leap from the free response up to the prox-
imity of the Budal’s limits. However, practical phys-
ical constraints (typically on the force, displacement,
and/or velocity) limit the scope of effectiveness of the
control action, such that the controlled response lies
in a neighbourhood of the free response, as narrow as
demanding the constraints are; indeed, Fig. 1 shows
that a realistic optimal control with tight constraints
leads to a much lower improvement with respect to
the baseline. Although it is tempting to rely on the
optimal control alone to increase the productivity, Fig. 1
suggests that improving the free response baseline is
still necessary; therefore, design should also be opti-
mised (ideally in conjunction with control), in order to
provide a fertile free response baseline that a realistic
(constrained) control can practically lead to optimal
power production.

Substantial design modifications, spanning from the
working principle and subsystem configurations to the
geometry and dimensions, are viable at low Technol-
ogy Readiness Levels (TRLs), when costs are relatively
low and failures are not catastrophic [10]. However, the
knowledge of the system may still be superficial at low



272-2

Power

Budal’s limit

Optimal control
. with loose constraints

¢ —

/7 -
" o —
-

Period

Fig. 1. Notional power extraction for different wave periods of a
generic heaving point absorber wave energy converter, including
Budal’s power extraction limits, free response baseline with passive
control, and optimal control with loose and tight constraints.

TRL, since experience is limited and numerical models
may not be reliable. Indeed, holistic techno-economic
optimisations that modify the design rely on the ac-
curacy of the underlying numerical model, and its
effectiveness in a real world application depends on the
representativeness of the numerical model [11]. Fidelity
is commonly interpreted as a gradient, with gradu-
ally higher accuracy for incrementally more complex
models [12]; common available models for WECs range
from linear potential flow theory [13], with inclusion
of correction factors for viscous effects of the wave-
structure interaction [14] and potential device-specific
nonlinearities [15], to weakly-nonlinear model [16] and
fully-nonlinear Computational Fluid Dynamics models
[17] used to implement numerical wave tanks [18].

Due to the strict requirement of low computational
time, optimisations are implemented with either linear
[19], linearized [20], or reduced models [21]; based on
the hypothesis that fidelity is a gradient, it is assumed
that the real behaviour of the WEC will fall within
a given range of error, somewhat proportional to the
complexity of the model [13]. However, the accuracy
of representation of certain nonlinear phenomena is
actually Boolean (yes or no), rather than a gradient, in
the sense that they are either articulated or completely
overlooked [22]. This is the case of parametric resonance.

Parametric resonance is a type of instability, further
discussed in Sect. II, that can be appreciated only
by models considering time-varying wetted surfaces;
therefore, linear models are completely blind to para-
metric resonance. When present, it is usually discov-
ered (with dismay) well after design, likely in the first
experimental tests [23]: it is usually detrimental and
mitigation actions are sought [24].

In this paper, it is argued that, if properly embedded
early in the design phases, parametric resonance can
actually be exploited to improve power conversion
capabilities. The reason why this is quite uncommon
is that numerical models typically able to articulate
parametric resonance are time consuming and not
suitable for early design applications. In addition, since
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parametric resonance may appear under narrow fre-
quency conditions, also fully-nonlinear CFD models
may overlook this phenomenon [25]. In this paper, a
computationally efficient mathematical formulation is
briefly presented and used, based on a recent descrip-
tion of nonlinear Froude-Krylov forces for prismatic
floaters [26], which is computationally compatible with
early design applications and extensive simulation,
as well as an input generator for data-driven system
identification approaches.

The remainder of the paper is organized as follows:
Section II describes parametric resonance, when it is
detrimental (most cases) and a few examples when it
is exploited (within and outside wave energy field).
Section III proposes a WEC that is purposely designed
to be prone to parametric resonance, with the objective
to increase the free response bandwidth. Section IV
presents the computationally efficient numerical model
that can articulate such a nonlinear phenomenon. Fi-
nally, Sect. V presents results and discussion, while
Sect. VI draws final conclusions.

II. PARAMETRIC RESONANCE

Parametric resonance is an internal excitation mech-
anism activated by time-variations of one or more
parameters of the system [27]. Such a phenomenon is
usually related to a Mathieu-type of instability [28]. The
Mathieu equation is a single degree of freedom (DoF)
second-order differential equation of motion of the
variable x, with the stiffness term varying harmonically
with time (¢) at a given frequency (w); in real engi-
neering applications, the damped Mathieu equation is
considered:

X+ pux+ (A4 Acost)x =0, 1)

where the time-derivatives are with respect to the
dimensionless 7 = wt, A represents a dimensionless
stiffness, A is the dimensionless amplitude of the stiff-
ness variation, and p is the dimensionless damping
coefficient. The stability diagram of equation (1) is
shown in Fig. 2, where A? = w,/w and w, is the
natural frequency of the 1-DoF system; two conditions
for instability (shaded areas in Fig. 2) arise:

1) The excitation frequency (w) is twice of or equal to
the natural frequency (wy,) of the system (A = 0.25
or 1, respectively)

2) The excitation amplitude exceeds internal dissipa-
tions of the system (increasing A)

The Mathieu equation can give precious insight to
grasp an overall understanding of the conditions trig-
gering parametric resonance, which in turn can lead
design choices (as discussed in Sect. II); however, it is
not applicable to predict the severity of the parametric
response, especially because there is no straightforward
correspondence between the coefficients of equation (1)
and the physical phenomenon. In fact, the variations
of the stiffness term are, in general, not harmonic, but
depend on the intersection of the floater and the wave
field. Moreover, similar nonlinearities are present in the
wave excitation force. Finally, 6-DoF systems are likely
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Fig. 2. Stability diagram of the damped Mathieu equations (u is
the damping), shown in (1). Unstable regions are shaded; they arise
when the excitation frequency is twice (A = 0.25) of or equal (A =
1) to the natural frequency of the system, and for sufficiently large
excitation amplitude (increasing A). Adapted from [29].

to entail complex energy exchanges between different
modes of motion. Therefore, a dedicated numerical
model is developed in Sect. IV.

The following subsections briefly mention how para-
metric resonance is perceived: the vast majority of
applications consider it as detrimental, hence a risk
to be avoided, as discussed in Sect. II-A; conversely,
Sect. II-B presents some examples, apart from the
present paper, where parametric resonance is leveraged
as an enabling phenomena to improve performance,
hence treated as an opportunity.

A. A risk to be avoided?

Parametric resonance is a widely known phe-
nomenon in classic ocean engineering [28], carefully
evaluated because of the great economic and safety
issues it entails. It is of particular interest for large
cargo ships, since unsuppressed parametric roll in-
stability can lead to loss of transported goods and
potential harm to the crew; therefore, various methods
for detection and prevention of parametric rolling are
developed and implemented [30]. Similarly, spar-like
structures are prone to experience parametric reso-
nance [31], with consequent large rotations. Therefore,
parametric resonance is not desirable, since such struc-
tures are expected to experience small rotations to
be fit for purpose (typically oil or floating offshore
wind); in addition, the station keeping system should
be designed with proper knowledge of the types of
motions during operation.

In the wave energy field, parametric resonance has
been observed in a few floating systems, composed
by either one tethered body or a self-referenced two-
body system: in a floating sloped WEC [32], in a
pendulum-based self-referenced device [33], in a float-
ing oscillating water column [34], in a bottom-tethered
device [35], and in a two-body self-referenced device
[36]. In all of such instances, parametric resonance
decreases the energy conversion efficiency, since it
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internally diverts part of the energy away from the
degree of freedom (DoF) where the PTO is installed,
hence reducing the available energy. In addition, higher
and potentially unexpected loads may be transferred
to other subsystems of the WEC, particularly on the
mooring system, increasing chances of damage and
reducing reliability. Therefore, dedicated detection and
suppression strategies are put in place to avoid the rise
or parametric instability [37].

B. An opportunity to be exploited?

If properly embedded in early design phases, para-
metric resonance can be an opportunity to broaden
the bandwidth and increase power extraction for the
following two main reasons:

i) Parametric resonance can be used to internally
reroute part of the energy towards the DoF where
the PTO is installed, increasing the amount of
available energy.

ii) Instabilities grow exponentially, compatibly with
the damping of the system.

Outside of the wave energy field, in particular in the
mechanical vibration energy harvesting (VEH) field,
it is common that nonlinearities and instabilities are
the founding working principles of the system, rather
than a burden. In fact, linear VEHs typically have a
sharp and narrow frequency response curve, which
would not make energy generation economically vi-
able. With the objective to broaden their bandwidth,
popular expedients are to introduce nonlinearities in
the system [38]: Duffing nonlinearity [39], bistability
[40], parametric oscillators [41], stochastic oscillators
[42], among others. One of the reasons why instability-
based working principles are so popular in the VEH
field is mainly the simplicity of the underlying nonlin-
ear mathematical model, which normally is algebraic
and fully-white (i.e., transparently based on physical
quantities).

There exist a few examples of WECs that exploit
parametric resonance to extract energy. The majority of
concepts are based on the inertial coupling between a
floater and one [43] or more [44] pendula; in some con-
cepts, rotation control may be required to initiate and
maintain the parametric rotation [45], potentially im-
plemented via length adjustments [46]. A single floater
system is considered in [47], where a control strategy is
able to take into account the nonlinear hydrodynamic
coupling between heave and surge/pitch, such that the
energy extracted from heave is increased. Finally [48]
considers a WEC with two concentric floaters, where
parametric resonance is induced by the modulation of
the mass.

III. A 2:1 PARAMETRIC RESONANCE PITCHING WEC

This paper focuses on WECs that extract energy from
the pitching motion of a floater, either directly (e.g., via
a fixed reference super-structure) or indirectly (e.g., via
inertial coupling with an inner mechanisms); numerical
results are produced for a case study with inertial
coupling, although notional considerations are more
general.
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Fig. 3. Schematics of the PeWEC-like wave energy converter, with
a pendulum contained within a sealed hull. The dashed transparent
body is at rest position in still water, while the solid lines represent
a displaced position in sea water.

Evidences from [47] or [49] have shown that, al-
though linearly independent, heave and pitch DoFs
are hydrodynamically coupled once the instantaneous
wetted surface is taken into account in the computation
of the excitation forces, particularly in the nonlinear
Froude-Krylov component. Therefore, the present pa-
per argues that a WEC specifically designed to have
a 2:1 ratio between heave and pitch natural frequency
would greatly benefit from the consequently induced
parametric resonance. In fact, under parametric insta-
bility conditions (Sect. III), a portion of the incoming
energy would be channelled from the heave DoF to the
the pitch DoF, hence made available to be converted by
the PTO.

In order to test such an assumption, as well to
provide preliminary quantitative results about the sig-
nificance of the benefits, if any, a case study is herein
formulated. The Pendulum Wave Energy Converter
(PeWEC) is considered as a baseline [50], which is
a sealed floater containing a pendulum: as the hull
pitches in response to incoming waves, the oscillations
of the pendulum due to the inertial coupling are
dampened by the PTO. A schematics of a PeWEC-like
device is presented in Fig. 3. The geometry, dimensions,
and mass properties of the PeWEC-like device are
inspired by [49] and [51]; however, the pitching inertia
of the system is artificially modified such that the heave
natural period (73) would be half the pitch natural
period (I3), i.e. a 2:1 ratio between the respective
natural frequencies.

IV. MATHEMATICAL MODELLING

The purpose of this paper is to specifically study
the effect of parametric resonance due to the nonlinear
coupling between heave and pitch degrees of freedom.
Therefore, the mathematical model and setup is care-
fully chosen to enable meaningful and unambiguous
considerations; in particular, confounding factors are
eliminated to guarantee a clear, transparent and uni-
vocal inference of causality. Therefore, the following
simulation conditions are identified:

o Monochromatic waves: Since parametric resonance
is a frequency-dependent phenomenon, regular
waves are considered to clearly discriminate
trends in the dynamic response of the system.

o Time-domain model: described in Sect. IV-A, it is
necessary to numerically solve nonlinear systems
in the time domain.
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o Nonlinear Froude-Krylov (NLFK) force: it is the only
nonlinearity included in the system, described in
Sect. IV-B, since it can articulate parametric reso-
nance; all other nonlinear effects are neglected (i.e.,
viscosity, PTO saturations, pendulum kinematics,
moorings, etc.), so that any nonlinear behaviour is
univocally due to NLFK.

o Only heave and pitch hydrodynamic DoFs: being
linearly uncoupled, any coupling in the nonlin-
ear response depends only on parametric res-
onance, which activates an internal energy ex-
change between such DoFs; note that simulating
surge would have been a confounding factor, since
it would have introduced a linear coupling with
pitch, hence an additional direction of energy flow,
as well as required an additional station-keeping
term in the equation of motion.

e No PTO: as discussed in Sect. I, considering the
free response of the device is crucial to articu-
late its inherent characteristics, which can then be
leveraged by an appropriate control system.

A. Time domain model

Two time-domain models are herein considered,
with the only difference being the inclusion of linear
(LFK) or nonlinear (NLFK) static and dynamic Froude
Krylov forces. Regular waves are considered, whose
periods and heights are chosen considering a typical
bivariate distribution [52]. The linear equation of mo-
tion, defined about the center of gravity, is written in
the frequency domain as follows:

[~w? (M + A(w)) + jwB(w) + Kp| & =F4 + FFK? |
2

where &, is the 2x1 state vector, composed of heave (z)
and pitch (), M the diagonal inertia matrix, A(w) and
B(w) the diagonal frequency-dependent added mass
and radiation damping, K}, the diagonal linear hydro-
static stiffness, F; and Fpg, are the diffraction and
linear dynamic FK forces. The linear hydrodynamic
curves are computed for the mean wetted surface of
the floater via a linear Boundary Element Method
(BEM) software, such as Nemoh [53] or WAMIT
[54]. The NLFK version of (2) alternatively computes
(Frk, — Kp&,) in a nonlinear way, as described in
Sect. IV-B.

The frequency domain equation is converted into
time domain, substituting the radiation frequency do-
main components by their time-domain state-space
approximation, identified via the FOAMM toolbox [55],
[56]. In addition, the 2-DoF equation for the hydro-
dynamic interaction of the waves with the hull is
augmented to include the force exchange between the
hull and the swinging pendulum; therefore, the 2-
DoF state vector &, is augmented to £; by appending
the rotation (¢) of the pendulum about its hinge. The
hull-pendulum interactions are linearized as in [51],
resulting in additional terms in the total inertial and
stiffness matrices of the augmented system.
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B. Nonlinear Froude-Krylov force model

Since parametric resonance is due to time-varying
parameters of the system, nonlinear Froude-Krylov
forces are best suited numerical tools; in fact, NLFK
forces are computed as the integral of the pressure of
the undisturbed wave field onto the instantaneous wet-
ted surface. As mentioned in Sect. I, applications based
on real-time simulated results and/or several iterations
in a short time, require models with an adequately
low computational cost. While geometries of arbitrary
complexity may require mesh-based NLFK methods,
often computationally demanding, axisymmetric and
prismatic floaters can benefit from a computationally
effective analytical description of the NLFK integrals.
The PeWEC-like device is indeed prismatic, i.e. its
geometry is invariant in the horizontal direction per-
pendicular to the wave propagation and parallel to the
wave front.

Although throughout details of the NLFK integra-
tion method for prismatic floaters are given in [49], a
brief summary is presented hereafter. Assuming two-
dimensional waves in the (z,z) coordinate system,
where z is the direction of propagation of the wave,
and z is the vertical axis, positive upwards, with the
origin at the (SWL), a the wave amplitude, w the wave
frequency, k the wave number, h the water depth,
and 2’ the vertical coordinate modified according to
Wheeler’s stretching [57], the total undisturbed pres-
sure (p,) follows:

cosh (k (2/ + h))

cosh(kh) ' @)

Py = —pgz + acos (wt — kx)
where p is the water density, g the acceleration of
gravity.

Froude-Krylov generalized forces (Frg), divided
into linear forces (frx) and torques (Trpk), integrate
the undisturbed pressure field (p,), shown in (3), as
follows:

frr(t) =1, + //pu(a:,y,z,t) n ds, (4a)

Suw(t)
Tri(t) = (rg—rR)xfg—l—//pu(x,y,z,t) (r—rg)xnds,
S (t)

(4b)
where f; is the gravity force, 7, its contribution to the
torque, n is the unity vector normal to the surface, r
is the generic position vector, rr = (zr,yr, zr)’ is the
reference point around which the torque is computed,
and likewise r, is the position vector of the centre of
gravity.

While generic NLFK solvers for arbitrary complex
floaters must rely on a meshed representation of S,,(t),
which becomes the computational bottleneck, a faster
analytical representation, already available for axisym-
metric floaters [58], [59], can be readily obtained also
for prismatic floaters. Figure 4 shows a snapshot ob-
tained with such an analytical representation, high-
lighting how significantly the instantaneous wetted
surface changes with respect to the rest position.
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Fig. 4. Snapshot of a displaced hull, shown in green thick solid
line, with instantaneous free surface elevation, shown in blue thick
solid line, enclosing the instantaneous submerged volume (shaded
area). The crossed-circle marker shows the position of the centre of
gravity, while the square shows the centre of buoyancy (empty: LFK;
full: NLFK). The rest position (LFK) is shown in thin line. Adapted
from [26].

Within a body-fixed frame, a generic point  be-
longing to the external surface of a prismatic body
invariant in the ¢ direction can be mapped by a change
of coordinates R? — R? as:

=, (a)
Iy 9=9 , Q€ [O‘IvQQ]/\QE [glaQQ] (5)
Z=".(a)

where v, and v, are generic parametric curves, and «
is the sweep parameter. Typically, but not necessarily,
a goes from 0 to 1 as the directional curve moves
from one to the other end. The parametric formulation
enables the use of arbitrary complex cross-sections of
the prismatic body.

Finally, thanks to the analytical description in (5) and
appropriate mapping between world frame and body-
fixed frame, it is possible to entirely define all terms
in the integral formulation in (4), which is then solved
numerically.

V. RESULTS AND DISCUSSION

Time-domain simulations are performed for a dense
grid of monochromatic waves, sweeping wave periods
(Ty) and wave heights (H,,) to include relevant oper-
ational conditions. In particular, in order to highlight
parametric resonance behaviour, T, ranges from 0.25
to 1.4 times the natural period in pitch (75); similarly,
H,, is defined as a ratio of the draft (D) of the floater at
rest, ranging from 0 to 1. Time-domain simulations are
performed for long enough that the response is ensured
to be steady and periodic; in order to smooth the initial
transient, a sigmoid weight from 0 to 1 is applied
during the first 5 wave periods of the incoming free
surface elevation. The resulting amplitude of motion is
computed as the difference between peak and trough
of the signal over a time window taken at the end
of the simulation; the length of the time window is
2T, to appreciate the expected frequency doubling,
due to parametric resonance. Figure 5 presents such
amplitudes in normalized heave (z/D), pitch (#), and
the pendulum oscillation (), plotted with respect to the
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Fig. 5. From left to right: amplitudes in normalized heave (z/D), pitch (9), and the pendulum oscillation (g), plotted with respect to the
normalized wave period (T /T5) and normalized wave height (Hy, /D); top and bottom rows refer to LFK and NLFK models, respectively.

The dashed and dash-dotted lines highlight T, /T5 equal to 0.5 and 1, respectively.

normalized wave period (T,,/T5) and normalized wave
height (H,,/D), according to LFK and NLFK models.
Meaningful ratios of T,,/T5 are highlighted with 2 red
lines: a dash-dotted line is located at T,, = T5, whereas
a dashed line highlights T3, = T3 = 0.5T5, following the
2:1 resonance condition imposed in Sect. III, i.e. both
the heave natural period and the simplified parametric
resonance condition.

The linear response (top row of Fig. 5) presents
no coupling between heave and pitch, as expected.
Both heave and pitch responses reach their peak at
their respective natural frequencies (T, = T3 = 0.5T5
and T,, = T5, respectively); the pendulum oscillation
follows directly the pitching response, thanks to the in-
ertial coupling. According to the hypothesis discussed
in Sect. 1V, the LFK model is fully linear and not
dampened, and no saturation or end-stop is included
in the simulation; it follows that unrealistic responses
are obtained close to the pitching natural frequency.
Therefore, to improve readability and enable meaning-
ful discussion, any oscillation above 50° is not plotted
in Fig. 5 (white area).

The nonlinear response (bottom row of Fig. 5) is
presented with the same color bar scale of the LFK
model, to facilitate qualitative comparison of the re-
sulting amplitudes of motion. It is evident that a non-
linear coupling appears at both highlighted normalized
wave periods. In particular, at 73, = 0.575, the heave
response decreases with respect to the LFK model, with
a clear wedge incision in the response scatter; the same
wedge is found in the # and ¢ responses, highlighting
how parametric resonance effectively redirects part of
the energy away from the heaving DoF. It is worth

noting that, at this frequency, the linear model pre-
dicts close to no response, remarking that parametric
resonance is the one and only excitation mechanism,
introduced thanks to the 2:1 ratio prescribed in the
design stage (see Sect. III).

As H, increases, the wedge appears asymmetric
with respect to the vertical line 7;, = 0.575: while
the left edge remains vertical, the right edge shifts
at higher periods; it follows that the parametric reso-
nance response range increases and, being more energy
available at higher H,,, the amplitude of the response
increases accordingly. This behaviour is consistent with
the qualitative prediction of the Mathieu diagram,
shown in Fig. 1, where the width of the instability
region increases for higher incoming energy, once the
internal damping of the system is overcome.

Similarly, nonlinear coupling also appears at T, =
Ts; however, inverse energy flow is obtained in this
case, since the heave response is higher at T, = 75 than
in its neighbourhood. Based on the simulation condi-
tions, it is not possible to assess if this is detrimental or
beneficial to energy extraction, since the LFK response
in pitch is unrealistic and cannot provide a meaningful
benchmark. If the total mechanical energy absorbed by
the whole system is assumed to be constant, parametric
resonance drains some energy from pitch to obtain a
higher heaving response, so it would be detrimental.
However, parametric instability may induce an overall
higher response, hence making more mechanical en-
ergy available at the floater; in this case, parametric
resonance may still have a net positive effect at the
PTO axis, despite the higher heave response.

It is also worth noting that the pitch, and conse-
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Fig. 6. Time trace of the dynamic response at 1o, = 0.5575 and H,, = 4m, according to the LFK (left) and NLFK (right) models. A sigmoid

ramp is applied to the incoming free surface elevation.

quently the pendulum oscillation, are lower than the
LFK prediction, and never take unrealistic values. This
is a direct consequence of using a representative NLFK
model, which takes into account the actual instanta-
neous wetted surface of the floater.

Finally, Fig. 5 shows that inducing parametric res-
onance has had the effect of enlarging the potential
bandwidth of available energy conversion, since the
PTO axis is excited in a wider range of wave periods,
i.e. close to 0.575 and T5. Such a modification of the free
response of the system can be leveraged by a control
strategy if an only if its underlying numerical model is
able to articulate parametric resonance (if model-based
controllers are used). Such a nonlinear controller could
act on the system to trigger parametric instability, and
eventually enhance the severity of parametric response.
However, embedding complex nonlinearities into a
control-oriented numerical model is a challenging task:
promising approaches are based on identification data-
driven techniques, already proven to be effective with
NLFK-type of nonlinearities [60].

While Fig. 5 presents a comprehensive overview
of the WEC response over a wide range of wave
conditions, it is worth analysing a representative ex-
ample of time trace. Figure 6 shows the response in
parametric resonance conditions, particularly at T3, =
0.55T5 and H,, = 4m. On the left hand-side (LFK),
the linear response is mainly in heave, at a single
frequency, equal to the excitation wave frequency; pitch
and pendulum responses are coupled and negligible.
Conversely, the nonlinear response, on the right hand-
side (NLFK), clearly shows the process of coupling
between heave and pitch. In particular, during the first
10 wave periods, pitch is negligible and the nonlinear
and linear heave responses are similar, as highlighted
by the horizontal red line; however, parametric reso-
nance gradually drains energy away from heave and
towards pitch such that, after the transient is elapsed
(t > 20Ty), heave is significantly lower while pitch
is high. Moreover, note that the steady-state heave

response exhibits a clear nonlinear frequency doubling.

In order to better visualize the change in available
energy, and the transfer from heave to pitch DoFs,
Fig. 7 plots the instantaneous kinetic energy in heave
(Ex,.) and pitch (Ey ), for the same wave as in Fig. 6.
During the first transient, while pitch is negligible, LFK
and NLFK heave kinetic energies are similar; however,
the kinetic energy in pitch gradually increases as para-
metric instability builds up, significantly reducing the
kinetic energy in heave.

VI. CONCLUSION

This papers elaborates on the role of parametric
resonance in wave energy converters: usually seen as
detrimental and undesirable, if properly embedded
into the underlying working principle and in early
design phases, parametric resonance can potentially
become an enabling factor to increase the conversion
bandwidth and efficiency. Based on this rationale, a
2:1 parametric resonance WEC is herein proposed,
where the natural period in one degree of freedom is
purposely tuned to be twice that of another degree of
freedom, such that a nonlinear hydrodynamic coupling
is used to redirect part of the external energy towards
the power take-off system.

Exploiting this potential requires to appropriately
address challenges in the mathematical modelling
and energy-maximisation control. Computationally ef-
ficient mathematical models are required to steer the
design at early stages; parametric resonance can be
articulated only by models considering time-varying
wetted surface. Therefore, this paper implements a
computationally convenient formulation of nonlinear
Froude-Krylov forces, available for axisymmetric and
prismatic floaters.

Thanks to the 2:1 design and to the appropriate
numerical model, this papers quantitatively confirms
that indeed parametric resonance does appear at the
predicted conditions, and it is also meaningful: in fact,
the free response of the system shows a significant
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Fig. 7. Instantaneous kinetic energy in heave (top) and pitch (bottom)
for a wave with T, = 0.55T5 and H,, = 4m.

increase in the available mechanical energy at the
power take-off.

In conclusion, this paper provides evidences that the
free response has been indeed improved. However,
parametric resonance has only provided a more fertile
baseline with higher available energy; it is the role of
an appropriate nonlinear control to actually exploit this
potential for a final higher power output.

REFERENCES

[1] A. Vargiu, R. Novo, C. Moscoloni, E. Giglio, G. Giorgi, and
G. Mattiazzo, “An Energy Cost Assessment of Future Energy
Scenarios: A Case Study on San Pietro Island,” Energies, vol. 15,
no. 13, p. 4535, 2022.

[2] R. Novo, P. Marocco, G. Giorgi, A. Lanzini, M. Santarelli, and
G. Mattiazzo, “Planning the decarbonisation of energy systems:
The importance of applying time series clustering to long-term
models,” Energy Conversion and Management: X, vol. 15, no.
January, p. 100274, 2022.

[3] M. Rava, P. Dafnakis, V. Martini, G. Giorgi, V. Orlando, G. Mat-
tiazzo, G. Bracco, and A. Gulisano, “Low-Cost Heaving Single-
Buoy Wave-Energy Point Absorber Optimization for Sardinia
West Coast,” Journal of Marine Science and Engineering, vol. 10,
no. 3, 2022.

[4] P. Ruiz-Minguela, D. R. Noble, V. Nava, S. Pennock, J. M.
Blanco, and H. Jeffrey, “Estimating Future Costs of Emerging
Wave Energy Technologies,” Sustainability 2023, Vol. 15, Page
215, vol. 15, no. 1, p. 215, dec 2022.

[5] E. Giglio, E. Petracca, B. Paduano, C. Moscoloni, G. Giorgi, and
S. A. Sirigu, “Estimating the Cost of Wave Energy Converters at
an Early Design Stage: A Bottom-Up Approach,” Sustainability

2023, Vol. 15, Page 6756, vol. 15, no. 8, p. 6756, apr 2023.
[6] D. Son and R. W. Yeung, “Optimizing ocean-wave energy ex-

traction of a dual coaxial-cylinder WEC using nonlinear model
predictive control,” Applied Energy, vol. 187, pp. 746-757, feb
2017.

—_

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

PROCEEDINGS OF THE 15TH EUROPEAN WAVE AND TIDAL ENERGY CONFERENCE, 3-7 SEPTEMBER 2023, BILBAO

Q. Li, X. Li, J. Mi, B. Jiang, S. Chen, and L. Zuo, “A tunable
wave energy converter using variable inertia flywheel,” IEEE
Transactions on Sustainable Energy, 2020.

O. Choupin, A. Tétu, B. Del Rio-Gamero, F. Ferri, and ]. Kofoed,
“Premises for an annual energy production and capacity factor
improvement towards a few optimised wave energy converters
configurations and resources pairs,” Applied Energy, vol. 312, p.
118716, apr 2022.

J. Falnes and ]. Hals, “Heaving buoys, point absorbers and
arrays,” Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, vol. 370, no. 1959, pp.
246-277, jan 2012.

D. Bull, R. Costello, A. Babarit, K. Nielsen, B. Kennedy, C. Bit-
tencourt Ferreira, J. Roberts, and J. Weber, “Scoring the Tech-
nology Performance Level (TPL) Assessment,” Proceedings of the
Twelfth European Wave and Tidal Energy Conference, pp. 1115-1-9,
2017.

E. Faraggiana, G. Giorgi, M. Sirigu, A. Ghigo, G. Bracco, and
G. Mattiazzo, “A review of numerical modelling and opti-
misation of the floating support structure for offshore wind
turbines,” Journal of Ocean Engineering and Marine Energy, vol. 8,
no. 3, pp. 433456, 2022.

J. Davidson and R. Costello, “Efficient Nonlinear Hydrody-
namic Models for Wave Energy Converter Design — A Scoping
Study,” pp. 1-65, 2020.

E. J. Ransley, S. A. Brown, M. Hann, D. M. Greaves, C. Windt,
J. Ringwood, J. Davidson, P. Schmitt, S. Yan, ]J. X. Wang,
J. H. Wang, Q. Ma, Z. Xie, G. Giorgi, ]J. Hughes, A. Williams,
I. Masters, Z. Lin, H. Chen, L. Qian, Z. Ma, Q. Chen, H. Ding,
J. Zang, J. van Rij, Y.-H. Yu, Z. Li, B. Bouscasse, G. Ducrozet, and
H. Bingham, “Focused wave interactions with floating struc-
tures: a blind comparative study,” Proceedings of the Institution
of Civil Engineers - Engineering and Computational Mechanics, vol.
174, no. 1, pp. 46-61, mar 2021.

L. S. P. Da Silva, B. S. Cazzolato, -. Nataliia, Y. Sergiienko,
B. Ding, H. M. Morishita, -. Celso, and P. Pesce, “Statistical
linearization of the Morison’s equation applied to wave energy
converters,” vol. 6, pp. 157-169, 2020.

S. A. Sirigu, F. Gallizio, G. Giorgi, M. Bonfanti, G. Bracco, and
G. Mattiazzo, “Numerical and Experimental Identification of
the Aerodynamic Power Losses of the ISWEC,” Journal of Marine
Science and Engineering 2020, Vol. 8, Page 49, vol. 8, no. 1, p. 49,
jan 2020.

L. Letournel, C. Chauvigné, B. Gelly, A. Babarit, G. Ducrozet,
and P. Ferrant, “Weakly nonlinear modeling of submerged wave
energy converters,” Applied Ocean Research, vol. 75, no. March,
pp. 201-222, 2018.

P. Casalone, O. Dell’Edera, B. Fenu, G. Giorgi, S. A. Sirigu, and
G. Mattiazzo, “Unsteady RANS CFD Simulations of Sailboat’s
Hull and Comparison with Full-Scale Test,” Journal of Marine
Science and Engineering 2020, Vol. 8, Page 394, vol. 8, no. 6, p.
394, may 2020.

C. Windt, J. Davidson, and J. V. Ringwood, “High-fidelity
numerical modelling of ocean wave energy systems: A review
of computational fluid dynamics-based numerical wave tanks,”
Renewable and Sustainable Energy Reviews, vol. 93, pp. 610-630,
oct 2018.

A. Garcia-Teruel, B. DuPont, and D. I. Forehand, “Hull geome-
try optimisation of wave energy converters: On the choice of the
optimisation algorithm and the geometry definition,” Applied
Energy, vol. 280, p. 115952, dec 2020.

M. Bonfanti and G. Giorgi, “Improving Computational Effi-
ciency in WEC Design: Spectral-Domain Modelling in Techno-
Economic Optimization,” Journal of Marine Science and Engineer-
ing 2022, Vol. 10, Page 1468, vol. 10, no. 10, p. 1468, oct 2022.
N. Faedo, F ]J. Dores Piuma, G. Giorgi, and J. V. Ring-
wood, “Nonlinear model reduction for wave energy systems:
a moment-matching-based approach,” Nonlinear Dynamics, vol.
102, no. 3, pp. 1215-1237, nov 2020.

G. Giorgi, J. Davidson, G. Habib, G. Bracco, G. Mattiazzo, and
T. Kalmar-Nagy, “Nonlinear Dynamic and Kinematic Model
of a Spar-Buoy: Parametric Resonance and Yaw Numerical
Instability,” Journal of Marine Science and Engineering 2020, Vol.
8, Page 504, vol. 8, no. 7, p. 504, jul 2020.

K. R. Tarrant and C. Meskell, “Investigation on parametrically
excited motions of point absorbers in regular waves,” Ocean
Engineering, vol. 111, pp. 67-81, 2016.

J. Davidson, T. Kalmar-Nagy, and G. Habib, “Parametric exci-
tation suppression in a floating cylinder via dynamic vibration
absorbers : a comparative analysis,” Nonlinear Dynamics, vol.
110, no. 2, pp. 1081-1108, 2022.



GIORGI: EXPLOITING 2:1 PARAMETRIC RESONANCE

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

J. Palm, L. Bergdahl, and C. Eskilsson, “Parametric excitation of
moored wave energy converters using viscous and non-viscous
CFD simulations,” in Renew, no. October, 2018.

G. Giorgi, S. Sirigu, M. Bonfanti, G. Bracco, and G. Mattiazzo,
“Fast nonlinear Froude-Krylov force calculation for prismatic
floating platforms: a wave energy conversion application case,”
Journal of Ocean Engineering and Marine Energy, vol. 7, no. 4, pp.
439457, nov 2021.

G. Habib, G. Giorgi, and J. Davidson, “Coexisting attractors
in floating body dynamics undergoing parametric resonance,”
Acta Mechanica, vol. 233, no. 6, pp. 2351-2367, jun 2022.

T. I. Fossen and H. Nijmeijer, Parametric resonance in dynamical
systems. Springer, 2012.

G. Giorgi, R. P. F. Gomes, G. Bracco, and G. Mattiazzo, “Nu-
merical investigation of parametric resonance due to hydrody-
namic coupling in a realistic wave energy converter,” Nonlinear
Dynamics, 2020.

N. Umeda, H. Hashimoto, S. Minegaki, A. Matsuda,
N. Umeda, H. Hashimoto, S. Minegaki, and A. Matsuda, “An
investigation of different methods for the prevention of para-
metric rolling,” | Mar Sci Technol, vol. 13, pp. 16-23, 2008.

H. K. Jang and M. H. Kim, “Mathieu instability of Arctic Spar
by nonlinear time-domain simulations,” Ocean Engineering, vol.
176, pp. 31-45, mar 2019.

G. S. Payne, J. R. Taylor, T. Bruce, and P. Parkin, “Assessment of
boundary-element method for modelling a free-floating sloped
wave energy device. Part 2: Experimental validation,” Ocean
Engineering, vol. 35, no. 3-4, pp. 342-357, mar 2008.

J. Cordonnier, F. Gorintin, A. De Cagny, A. H. Clément, and
A. Babarit, “SEAREV: Case study of the development of a wave
energy converter,” Renewable Energy, vol. 80, pp. 40-52, aug
2015.

R. Gomes, J. Henriques, L. Gato, and A. Falcido, “Time-domain
simulation of a slack-moored floating oscillating water column
and validation with physical model tests,” Renewable Energy,
vol. 149, pp. 165-180, apr 2020.

J. Orszaghova, H. Wolgamot, S. Draper, R. Eatock Taylor,
P. H. Taylor, and A. Rafiee, “Transverse motion instability of
a submerged moored buoy,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 475, no. 2221,
2019.

A. Kurniawan, M. Grassow, and F. Ferri, “Numerical modelling
and wave tank testing of a self-reacting two-body wave energy
device,” Ships and Offshore Structures, vol. 14, no. supl, pp. 344—
356, oct 2019.

J. Davidson and T. Kalmar-nagy, “A Real-Time Detection Sys-
tem for the Onset of Parametric Resonance in Wave Energy
Converters,” Journal of Marine Science and Engineering, vol. 8,
no. 819, pp. 1—23, 2020.

Y. Jia, “Review of nonlinear vibration energy harvesting: Duff-
ing, bistability, parametric, stochastic and others,” Journal of
Intelligent Material Systems and Structures, vol. 31, no. 7, pp. 921-
944, 2020.

A. Bahrami and M. Tayarani, “Chaotic Behavior of Duffing
Energy Harvester,” Energy Harvesting and Systems, vol. 5, no.
3-4, pp. 67-71, sep 2018.

D. Liu, Y. Wu, Y. Xu, and J. Li, “Stochastic response of bistable
vibration energy harvesting system subject to filtered Gaussian
white noise,” Mechanical Systems and Signal Processing, vol. 130,
pp- 201-212, sep 2019.

G. Giorgi and N. Faedo, “Performance enhancement of a vibra-
tion energy harvester via harmonic time-varying damping: A
pseudospectral-based approach,” Mechanical Systems and Signal
Processing, vol. 165, p. 108331, feb 2022.

C. R. McInnes, D. G. Gorman, and M. P. Cartmell, “Enhanced
vibrational energy harvesting using nonlinear stochastic reso-

[43]

[44]

[45]

[46]

[47] S

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

272-9

nance,” Journal of Sound and Vibration, vol. 318, no. 4-5, pp. 655-
662, dec 2008.

S. Lenci, M. Brocchini, and C. Lorenzoni, “Experimental Rota-
tions of a Pendulum on Water Waves,” Journal of Computational
and Nonlinear Dynamics, vol. 7, 2012.

D. Yurchenko and P. Alevras, “Parametric pendulum based
wave energy converter,” Mechanical Systems and Signal Process-
ing, vol. 99, pp. 504-515, 2018.

V. Vaziri, A. Najdecka, and M. Wiercigroch, “Experimental
control for initiating and maintaining rotation of parametric
pendulum,” The European Physical Journal Special Topics 2014
223:4, vol. 223, no. 4, pp. 795-812, apr 2014.

F. Reguera, F. E. Dotti, and S. P. Machado, “Rotation control
of a parametrically excited pendulum by adjusting its length,”

Mechanics Research Communications, vol. 72, pp. 74-80, mar 2016.
. Zou, O. Abdelkhalik, R. Robinett, U. Korde, G. Bacellj,

D. Wilson, and R. Coe, “Model Predictive Control of parametric
excited pitch-surge modes in wave energy converters,” Interna-
tional Journal of Marine Energy, vol. 19, pp. 32-46, sep 2017.

B. Orazov, O. M. O'Reilly, and S. Savas, “On the dynamics of
a novel ocean wave energy converter,” Journal of Sound and
Vibration, vol. 329, no. 24, pp. 5058-5069, nov 2010.

G. Giorgi, “Computational performance of a fast nonlinear
Froude-Krylov force calculation approach for axisymmetric and
prismatic floaters,” in Proceedings of the European Wave and Tidal
Energy Conference, 2021, pp. 1898-1-1898-10.

F. Carapellese, E. Pasta, B. Paduano, N. Faedo, and G. Matti-
azzo, “Intuitive LTT energy-maximising control for multi-degree
of freedom wave energy converters: The PeWEC case,” Ocean
Engineering, vol. 256, p. 111444, jul 2022.

D. G. Gioia, E. Pasta, P. Brandimarte, and G. Mattiazzo, “Data-
driven control of a Pendulum Wave Energy Converter: A
Gaussian Process Regression approach,” Ocean Engineering, vol.
253, p. 111191, jun 2022.

G. Cervelli, L. Parrinello, C. Moscoloni, and G. Giorgi, “Com-
parison of the ERA5 Wave Forecasting Dataset Against Buoy
Record,” Instrumentation Mesure Métrologie, vol. 21, no. 3, pp.
87-95, 2022.

A. Babarit and G. Delhommeau, “Theoretical and numerical
aspects of the open source BEM solver NEMOH,” Proceedings
of the 11th European Wave and Tidal Energy Conference., no.
September 2015, pp. 1-12, 2015.

I. WAMIT, “WAMIT User Manual,” 2019.

N. Faedo, Y. Pefia-Sanchez, and J. V. Ringwood, “Finite-Order
Hydrodynamic Model Determination for Wave Energy Appli-
cations Using Moment-Matching,” Ocean Engineering, vol. 163,
pp- 251-263, 2018.

Y. Pefia-Sanchez, N. Faedo, M. Penalba, G. Giorgi, A. Merigaud,
C. Windt, D. Garc, L. Wang, and J. V. Ringwood, “Finite-
Order hydrodynamic Approximation by Moment-Matching (
FOAMM ) toolbox for wave energy applications,” 13th European
Wave and Tidal Energy Conference, 2019.

G. Giorgi and J. V. Ringwood, “Relevance of pressure field
accuracy for nonlinear Froude—Krylov force calculations for
wave energy devices,” Journal of Ocean Engineering and Marine
Energy, vol. 4, no. 1, pp. 57-71, 2018.

G. Giorgi, “Nonlinear Froude-Krylov Matlab demonstration
toolbox,” 2019.

G. Giorgi and J. V. Ringwood, “Analytical formulation of non-
linear Froude-Krylov forces for surging-heaving-pitching point
absorbers,” in ASME 2018 37th International Conference on Ocean,
Offshore and Arctic Engineering, Madrid, 2018.

N. Faedo, G. Giorgi, J. V. Ringwood, and G. Mattiazzo,
“Optimal control of wave energy systems considering non-
linear Froude-Krylov effects: control-oriented modelling and
moment-based control,” Nonlinear Dynamics, vol. 109, no. 3, pp.
1777-1804, 2022.



