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Fast time-domain model for an array of
interacting point-absorbers

Charitini Stavropoulou, Anders Goude, Jens Engstrom, and Malin Géteman

Abstract—A fast time-domain model is developed for
an array of six interacting point-absorber wave energy
converters, and validated with experimental wave tank
data. The devices are based on the design originated at
Uppsala University. The point-absorbers move in heave
and are placed in a symmetric grid, were each row contains
one pair. The equations of motion are solved directly in
the time domain following the Cummins’ formulation. The
hydrodynamic coefficients for the excitation and radiation
forces are obtained using an analytical multiple-scattering
method. Modelling an array of wave energy converters
in time results in a system of integro-differential equa-
tions, were convolution terms appear in the excitation
and radiation forces, implying that waves radiated by the
body in the past continue to affect the dynamics in the
future. Using time-domain models, the non-linear effects
that arise during the wave energy conversion chain are
treated as time-varying coefficients within the system of
differential equations describing the motion. The incident
waves are irregular, long-crested waves, corresponding to
three different sea states. The experimental data is obtained
from experiments carried out for a 1:10 scaled prototype
of an array of point-absorbers. Despite the differences
between the numerical and experimental set-up, the nu-
merical model accurately captures the heaving motion of
the buoys and their power absorption.

Index Terms—Wave power farm, point-absorber, time-
domain model, in-house numerical model, fast modeling.

I. INTRODUCTION

HE ocean covers the biggest part of the Earth’s

surface and is an almost boundless source of clean
energy. Energy captured from the waves has a potential
to fulfill the increasing worldwide demands, while
helping to decrease greenhouse gas emissions [1]. Wave
energy converters (WECs) are structures designed to
harvest the energy in the surface waves and convert
it into useful electrical energy through a power take-
off (PTO) system. The wave energy industry is not yet
mature, and wave energy is one of the least tapped
renewable energy resources, compared to wind or solar
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PV [2]. To produce power more than a few MW and to
enable an even power distribution, most wave energy
concepts include arrays of many absorbing units, so-
called wave power farms [3]. In particular, this is
true for point-absorber WECs, the largest category of
wave energy concepts. The WEC developed at Uppsala
University [4] belongs to this category. At the ocean
surface, buoys, small in relation to the wavelength, are
forced to oscillate by the waves. The oscillatory motion
can be converted to electricity by various methods,
including hydraulic pumps or direct-driven generators.

If wave power is to become a competitive energy
technology that can be realized on a large scale and
contribute to the global electricity production, funda-
mental challenges need to be resolved. The efficiency
of wave power technologies is still too low to justify
large-scale implementation [5]. In a farm, the WECs
interact with scattered and radiated waves which af-
fect their dynamics and total power absorption. The
performance is further affected by the electrical and
mechanical subsystems [6]. To simulate, control, and
optimize the behaviour of the interacting devices in
various sea states, reliable numerical tools are needed.
One way to solve accurately the hydrodynamic effects
associated with the interaction of the ocean waves
with the WEC is computational fluid dynamics (CFD)
simulations, see [7] and [8]. However, due to the high
computational cost associated with CFD methods, it is
not suitable for control, optimisation, or farm studies.

Modelling the dynamics and performance of wave
power farms is a challenging task, both numerically
and experimentally. In the majority of the wave farm
simulations, the equations of motion are solved in the
frequency domain [9], since time-domain models are
significantly more challenging to develop and compu-
tationally demanding. This is not only because of the
numerical integration involved, but especially due to
the computation of the convolution term accounting for
the radiated water waves on the free-surface, implying
that waves radiated by the body in the past continue to
affect the dynamics in the future. Therefore, modelling
an array of WECs in the time domain comes down
to solving a system of integro-differential equations,
were convolution terms appear in the computation of
the excitation and radiation forces [10].

Implementing a numerical scheme to approximate
the solution of such a system is not trivial, as the nu-
merical integration involved, requires significant com-
putational time. The effort is even heavier when more
than one devices are modelled moving in many de-
grees of freedom. In commercial simulation tools used
in studies for floats moving freely, see for instance the
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open-source software WEC-Sim in [11], a lot of effort
has been put to substitute the convolution integral
in the radiation force. The replacement is done by a
set of coupled linear Ordinary Differential Equations
(ODEs), usually expressed in a matrix form, and this
way an extra number of states is added to the existed
formulation. This so-called state-space representation
is more efficient due to its Markovian property, at any
instant, the value of the state summarises all the past
system information [12].

In this work, we model an array of six interact-
ing point-absorber WECs using a time-domain for-
mulation, where no substitution is assumed for the
convolution term in the radiation force. Instead the
numerical integration involved is performed directly.
The mathematical and numerical procedure will be
explained in detail, as we have found this to be seldom
included in publications, and to enable reproducibility
of the results. A unique feature of the developed time-
domain model is that the validation is done with actual
experimental data. Such data for wave power farms is
rare, due to the complexity and costs associated with
the task. The experimental results we use were carried
out in the COAST Lab at Plymouth University, UK,
corresponding to a 1:10 scaled prototype of an array of
point-absorbers [13].

The rest of the paper is organised as follows. In
Section 1II the theoretical background is presented. In
Section III the simulation results are compared against
the experimental data, and in Sections IV and V the
main results are discussed.

II. THEORY AND METHOD

We consider an array of N interacting point-
absorbers moving in one degree of freedom, heave. In
the rest of this work, all the hydrodynamic coefficients
correspond to the heaving mode. The equations of
motion for the floating bodies can be described by the
following system of ODEs,

(M, + M () - 5(t) =
Fe(t) + F(t) + Fu(t) + Fi(t) — Wh.

Here M, is the diagonal matrix containing the masses
of the floating buoys m;,, where j = 1,...,N and
M4 (o) is the matrix containing the added masses
at the infinite frequency limit. The added mass matrix
at the infinite frequency contains inputs mgs(cc) for
each pair ij of interacting point-absorbers, where 4, j =
1, ..., N. The solution vector, denoting the vertical dis-
placement of the buoys is z;(t) = (24, (t), ..., 26y (1)) L.
The excitation force is F.(t) = (F.,(t), ..., F, (t))T and
the radiation force is F,.(t) = (F}, (), ..., Fry (¢))T. Sim-
ilarly, F,(t) is the hydrostatic buoyancy force, F;(t) is
the force from the mooring line, connecting the surface
buoy to the translator inside the generator, and W is
the vector containing the weights of the buoys.

@)

A. The radiation force

Under the assumption of linear potential flow theory,
the fluid is assumed to be non-viscous, irrotational
and incompressible, the waves are non-steep and the
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boundary conditions are linearised. Then, the fluid-
structure interaction problem can be solved using a
linear hydrodynamic formulation, also for large farms
and control applications.

The radiation force in the Cummins’ formulation (1)
is a result of the radiation property of water waves. In
the time domain, the inverse Fourier transform of the
radiation force is [14],

Fraq(t) = F(t) — M (00)3,(t), 2)

where
E.(t) = —k(t) * (). 3)

Egs. (2) and (3) are analogous to the radiation terms
we have introduced in Eq. (1), where the infinite mass,
integrated within the radiation force, is extracted to
ensure convergence at infinity. Further, k(¢) is the ra-
diation impulse response function (RIRF), or memory
function, physically representing the effect of the past
body oscillations on its actual state [10]. Since the RIRF
is a real and causal function (k(t) = 0 and ¢ < 0),
it is enough to know either the radiation damping
coefficient R(w) or the added mass to derive it [14],

k(t) = 721_/0OO R(w) cos(wt) dw. 4)

To compute the convolution integral in Eq. (3) we
take into consideration the causality of the RIRF and
the commutativity of the convolution product. If we
further assume that the velocity input is causal as well,
then the convolution term becomes

Fo(t) = —k(t)  5(t) = —/O k(t—)i(r)dr. (5)

One of the difficulties in the computation of the radi-
ation force is the accurate numerical approximation of
the RIRF. To compute the integral in Eq. (4) over a finite
frequency range we have to introduce an upper trunca-
tion limit, which should be sufficiently high to achieve
an accurate numerical evaluation [15]. The radiation
damping tends to zero at the infinite frequency limit,
hence it is sufficient to introduce an upper frequency
value for this coefficient to be negligible. Taking as
the truncation frequency the one above which R(w)
is less than one thousandth its maximum value pro-
duces satisfactory accuracy [10], [16]. In this work we
use the analytical multiple-scattering model of [17] to
compute the radiation damping R(w) and the added
mass M?%(w) in the frequency domain. The analytical
model for determining the hydrodynamic coefficients
is exact within the limitations of linear potential flow
theory and we are able to choose the desired upper
truncation frequency limit 2 = 16 rad/s,

Q
k(t) = %/0 R(w) cos(wt) dw. (6)

The numerical integration of Eq. (6) can be achieved
under proper handling. The direct application of the
trapezoidal method can generate a periodic function
with period equal to the inverse of the frequency spac-
ing 27/dw, which is a pure numerical artefact [10]. In
reality the RIRF has a decaying behaviour, affecting the
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buoy velocity in the convolution term only for a few
seconds. To avoid the periodic occurrence we define
the RIRF in a time interval that is smaller than the
inverse of half of the frequency spacing. Using a small
enough frequency step dw, we interpolate the radiation
damping for finer frequency resolution, then we can
create a time-varying RIRF with high period. This
method ensures accuracy in the RIRF implementation,
as the repeated occurrence would appear much later.
Due to the rapid RIRF decay, a time stamp f4ecqy can
be set, after which the RIRF influence in negligible [10].
The Cummins’ formulation in Eq. (1) becomes

(M, + M ¥ (00)) - 2 (t) =

Fe(t)—/o k(t — 7)2(7) dT + Fy () + Fy(t) — W, @

The major difficulty in the numerical approximation of
Eq. (7) is the computation of the convolution integral in
the radiation force. The numerical integration requires
significant computational effort, since large amount of
data need to be stored to evaluate the integral in every
time-step. The effort is even heavier when more than
one devices are modelled moving in many degrees of
freedom. One common approach to solve this is to
apply the state-space formulation [11]. In this work,
we instead employ a direct integration, made com-
putationally feasible by the constraint that the buoys
are moving only in heave. We denote the convolution
integral in Eq. (5) as I(¢). Since the influence of I(t) is
limited after the specified time tgccqy, We obtain,

() = /0 k(t—7) 2 (r)dr ~ /0 Y ) s (t—r) dr. (8)

At each time instant ¢, the convolution integral de-
scribes the area under %,(7) weighted by k(t — 7).
As t changes, the weighting function k(¢ — 7) empha-
sises different parts of the velocity history Z,(7). For
computational efficiency the RIRF is not required to
be computed at every time-step during the numerical
integration of Eq. (7). A vector of pre-computed values
of the RIRF can be used together with the velocity
history [15]. To compute the integral in Eq. (8) we
can apply the trapezoidal method, assuming that the
numerical method used for the solution of the ODE
system in Eq. (7) has a constant time step dt. For
every pair of interacting floating bodies ij each element
within the integral vector I(¢) is approximated as

N

I(t) ~ Z; </€ij (0)2, (t) + kié(t)ébj (t — tdecay)
- L—1 9)
+ Z kij(ndt)zy, (t — ndt)) ,

Since we are implementing an array of six floats,
moving in heave, the inputs to the RIRF array k(t)
are denoted as k;;(t) for every pair ij of interacting
point-absorbers. At every time-step, the length of the
summation vector is L = tgecqy/ dt, as for each float,
L data points corresponding to the previous values of
the velocity history have to be stored and used in O(L)
arithmetic operations including products and sums.

265-3

B. The excitation force

The excitation force F,(t) is the dominant force from
the incoming wave. In the time domain, the force is
given by

F.(t) = fe(t) xa(t) = /:X) fe(T)a(t —7)dr. (10)

Here, a(t) is the wave elevation at a point of reference
O on the free surface with coordinates (zg, yo) and f(t)
is the excitation impulse response function (IRF) [14].
In contrast to the RIRF, the excitation IRF is not neces-
sarily causal. Hence, future knowledge of the surface
elevation is necessary to compute the current excitation
force. Several approaches to predict the incoming wave
within limited time horizons exist, see [18]-[21]. Here,
we make the simplified assumption that the incoming
wave is known over the time range we wish to solve
the Cummins’ formulation, which makes the numerical
implementation of Eq. (10) straight-forward.

C. Buoy configuration

We are interested to compare the numerical results
regarding the motion and the power absorption of
the interacting buoys against experimental data. The
physical experiments are carried out at a 1:10 scale
and consider an array of six identical point-absorbers,
free to move in six degrees of freedom. The surface
buoys are ellipsoids with radius R, = 0.244 m and
draft deyp, = 0.0948 m, and they are connected to six
individual power take-off (PTO) systems. The array
layout studied is a symmetric grid, with one pair of
floats in each row; a detailed discussion on the different
array configurations used in the experiments can be
found in [13]. In the numerical implementation, the
geometry of each buoy consists of a cylinder with
radius Ry, = 0.178 m and draft d.,; = 0.0948 m,
which corresponds to the same submerged volume and
draft of the physical elliptical buoys. This is because
the analytical multiple-scattering model of [17] used
to compute the hydrodynamic coefficients for the ex-
citation and radiation forces can only handle cylinder-
shaped floats or cylinders with moon-pool. To compute
the buoyancy force vector Fj,(t) in the Cummins’ for-
mulation we use the Archimedes” principle as

Fi(t) = pgmR2y (deyi — 2(1)), (11)

where g = 9.81 m/s? is the acceleration due to gravity,
and p = 1000 kg/m? is the water density.

D. PTO configuration

In the physical experiments, an alternating rotatory
generator is used as a PTO system; a detailed dis-
cussion can be found in [22]. The PTO dynamics are
described by the system of ODEs,

Mt . Zt(t) = FPTO(t) + F‘l/(t) - Wt. (12)

Here, M, is the diagonal matrix containing the mass of
each translator and z;(t) = (2, (t), ..., 25 ()T is the so-
lution vector describing the vertical displacement. F} (t)
is the mooring line force acting on the translator and
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W, is the vector containing the weights. We model each
point-absorber as one body, assuming a stiff connection
line between the surface buoy and the translator. This
way, the coupled system (7)—(12) is replaced by one
equation of motion as

(My + M, + M (00)) - 2(t) =
Ft) - / Kt — )7 dr + Fa()+  (13)
0
Fpro(t) — (Wy + W).

The damping force from the PTO system is given as
Fpro(t) = —v:(1). (14)

For the damping coefficient v, a constant value of 306
Ns/m is used, together with an additional damping of
63.2 Ns/m to account for the rope friction, see [13].

E. Numerical model

Eq. (13) is a system of integro-differential equations.
Therefore we can apply a fixed-step, explicit, Runge-
Kutta 4th order scheme (RK4) with time step dt = 0.05
s. This integration method is quite fast providing a
balance between accuracy of the results and computa-
tional efficiency. Although a more efficient integration
would involve variable-step routines, in our case a
fixed-step solver is more suitable. That is due to the
trapezoidal method involved in the computation of the
convolution term in the radiation force. A constant time
step within the integration routine will ensure that the
computation of the radiation integral in Eq. (9) and the
RIRF are consistent during the whole simulation. The
r¢, stage explicit Runge-Kutta method for Eq. (13) is
defined as follows,

Zn4+1 = Zn + dt(blk‘l + boko + ... + brk;r),

15
tpg1 = tp + dt. (15)

Here, n =1, ...,T, where T accounts for the end in the
wave time series. The coefficients b; are obtained from
the Butcher tableau of the classic 4th order Runge Kutta
method and the weights k; are recursively obtained
by solving a linear system at each time step. The
simulation is performed in MATLAB.

Fig. 1. Layout of the experimental array configuration of the
interacting point-absorbers. Illustration is taken by [13].

F. Physical experiment

The experiments were carried out in 2018 in the
COAST Lab at Plymouth University, UK. The specific
results we use in this work correspond to an array of
six devices placed in a symmetric grid, with one pair in
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each row. The model represents a 1:10 scaled prototype
of an array of point-absorbers, based on the WEC
concept developed at Uppsala University. The physical
set-up consists of six, identical, elliptical buoys moving
freely in six degrees of freedom. The PTO system is
located above the water connected to the buoys via
ropes, see [13] and [22]. The WEC array geometry can

W

2 L L L L I I
200 400 600 800 1000 1200

Time [s]

Wave amplitude [m]

Fig. 2. Irregular wave (IW3), generated through the Bretschneider
spectrum. The significant wave height is Hs = 1.75 m, and the energy
period is Te = 6.5 s.

TABLE I
INCIDENT WAVES.

1:10 1:1
Wave ID  Hg[m] Te[s] T[min] Hg[m] Te[s] T[min]
w1 0.175 1.42 6 1.75 45 20
w2 0.175 1.74 6 1.75 55 20
W3 0.175 2.06 6 1.75 6.5 20

@ Irregular waves corresponding to three sea states and the full
scale (1:1) components used in the numerical simulation. Table
information is taken by [13].

b The irregular waves are characterized by the significant wave
height Hs and the energy period T.. The total wave time is
denoted as T. Table information is taken by [13].

TABLE II
WEC AND SYSTEM SPECIFICATIONS

Parameters Symbol  Units 1:10 1:1
Exp. buoy radius  Reap [m] 0.244 2.44
Exp. buoy draft deap [m] 0.0948 0.948
Cyl. buoy radius R,y [m] 0.178 1.78

Cyl. buoy draft dey [m] 0.0948 0.948
Damping 0% [Ns/m] 306 9.68 -104
Water depth h [m] 2.5 25

The experimental (Exp.) and the numerical (Cyl.) radii and
draft. The generator damping is denoted as v and the water
depth as h. Froude scaling is used to derive the full scale
components. Table information is taken by [13].
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III. RESULTS

To study whether the linear model simulates accu-
rately the heaving motion and the power absorption of
each of the interacting devices within the array config-
uration, despite the simplifying assumptions made, we
compare the numerical results against the experimental
data described above. The dynamics of the WECs as
well as the absorbed power are compared in Sections
III-A and III-B, respectively.

A. WEC dynamics

The response of the WECs is tested in three different
sea states represented by irregular waves obtained
from the Bretschneider spectrum. Detailed informa-
tion on the sea states and the parameters used in
the experiments and the numerical simulations can
be found in Tables I and II. We study the simulated
and the experimental peak and trough buoy motion
z(t), calculated according to wave peaks and troughs
obtained during each wave period i. To compare the
numerical and experimental results, we use both linear
fitting and an error metric defined as

(i)exp (2)sim
’ peak,trough ~ Z peak,trough

(i)exp
z peak,trough

Error, = average (16)

The comparison is performed for each WEC within
the array, and for each irregular wave in Table 1. The
numerical results were run in full scale, and compared
with the experimental data using Froude scaling. In
Figs. 3-5, the time series of the buoy elevation, for the
last irregular wave (IW3), are shown for the first row
of WECs A and D, towards the incoming wave, the
middle row C, E, and the last row of WECs, B and F.
The numerical buoy motion follows the experimental
data quite well, especially for the first row of devices.
This phenomenon is expected as in the middle and
last row within the grid, the non-linear effects due to
the intense hydrodynamic interaction are increasing.
Further, the numerical and experimental motion peaks
for each WEC are shown in Figs. 6-11 together with
the linear fitting. The best agreement between the
numerical and the experimental peaks is for the first
row of WECs A, D. However, the middle and the
last row C, E and B, F are following the linear trend
as well, showing acceptable agreement between the
numerical and the experimental data, especially for
the smallest wave peaks. Since the motion analysis
has been performed for peaks and troughs for each
WEC and for each irregular wave, in Figs. 12 and 13
we can see a combined plot of the peak and trough
motion error percentage according to Eq. (16). The
average motion error varies for each WEC and for each
irregular wave. The average peak error is typically less
for the first row of WECs A and D, and is increasing
towards the upper back part of the grid. The average
trough error is also typically less for WECs A and D.

B. Absorbed power

We compare the average power absorption for each
WEC and for the whole park, for each irregular wave
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in Table I. The computed and measured power are
shown in Figs. 14-17. The results are relatively similar
for the three irregular waves. Regarding the individual
devices, the best match between the numerical and
the experimental results are for the most front row of
devices.

IV. DisCcussioN

In this study, we have developed a linear time-
domain model to simulate the motion of each wave
energy converter (WEC) within an array configuration,
taking into account the complex hydrodynamics aris-
ing from the interaction with scattered and radiated
waves. The performance of the WECs has been eval-
uated for three different sea states represented by the
irregular waves listed in Table I.

A key aspect of this study is the validation of the
heaving motion and power absorption of each WEC
using experimental data obtained from a 1:10 scaled
prototype of an array of point-absorbers. In Figs. 3-5,
we present the time series of the buoy elevation for
each row of devices within the array, focusing on the
irregular wave IW3. Despite the presence of irregular
waves and the inherent non-linear phenomena in-
volved, the numerical buoy motion closely matches the
experimental data. The validation is further supported
by analyzing peaks and troughs for each wave period,
as illustrated in Figs. 6-11 and Figs. 12-13. Notably,
the front row of WECs (A and D) exhibits the least
average motion error, as the numerical and experimen-
tal motion peaks align well with the linear fit. This
observation aligns with expectations, as the non-linear
hydrodynamic interactions become more pronounced
deeper within the array configuration (WECs C, E, B,
and F), making the accurate capture of heaving motion
for the middle and back rows more challenging using
a linear numerical scheme.

Further, we analyze the average power absorption
for each WEC within the array and for all the examined
irregular waves. From Figs. 14-16 it is shown that the
results demonstrate consistent behavior for all wave
scenarios. Similar to the motion results, the best agree-
ment between the experimental and numerical results
is generally observed for the front row of devices (A
and D). Fig. 17 depicts the comparison of the average
power absorption for the entire wave power farm,
showing good agreement between the numerical and
experimental data. It is important to note that despite
the percentage differences between the numerical and
the experimental peaks and troughs (as seen in Figs.
12-13), the resulting absorbed power shows a high
level of agreement (as seen in Figs. 14-17). The linear
scheme can capture the general trend of the motion, it
cannot simulate in detail the extreme peaks or troughs.
Although the heave motion experiences occasional,
instantaneous peaks, these fluctuations do not substan-
tially contribute to the power absorption. Therefore, the
numerical model developed in this study is capable
of rapidly providing a reliable estimate of the power
absorption for the wave power farm.
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Fig. 3. Time series of the buoy elevation for the first row of WECs, A and D, together with the according experimental data. The markers
in the plot correspond to peaks and troughs used in the validation of the scheme. The incoming wave corresponds to irregular wave IW3.
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Fig. 4. Time series of the buoy elevation for the middle row of WECs, C and E, together with the according experimental data. The markers
in the plot correspond to peaks and troughs used in the validation of the scheme. The incoming wave corresponds to irregular wave IW3.
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Fig. 5. Time series of the buoy elevation for the last row of WECs, B and F, together with the according experimental data. The markers in
the plot correspond to peaks and troughs used in the validation of the scheme. The incoming wave corresponds to irregular wave IW3.
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Fig. 9. Numerical peaks plotted against experimental peaks, together
with a linear fitting for WEC D and irregular wave IW3.
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Fig. 15. Graph of the average power absorption for each WEC for
the second irregular wave IW2.
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Fig. 16. Graph of the average power absorption for each WEC for
the third irregular wave IW3.
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V. CONCLUSIONS

In this work, we have presented a numerical model
to simulate the motion and power absorption of an
array of interacting point-absorber wave energy con-
verters (WECs), inspired by the design originated at
Uppsala University. The devices undergo heave mo-
tion, and their response is tested using three irregu-
lar waves generated from the Bretschneider spectrum.
Our simulation approach involves an in-house, time-
domain model that employs direct numerical integra-
tion to solve the system of integro-differential equa-
tions governing the WECs’ behavior.

We emphasize that the strength of our model lies
in its simplicity and efficiency. It is a fast and linear
tool that demands minimal computational effort for
accurately modeling the motion and power output of
a wave power farm. To achieve even higher accuracy,
more sophisticated high-fidelity models, as highlighted
in [23], should be employed. However, due to the
significant computational cost associated with such
models, low- or mid-fidelity models like the one pre-
sented in this study remain the only viable option for
analyzing arrays of interacting devices.

A unique aspect of this work is the validation of
our numerical scheme using actual experimental data.
Acquiring such data is often challenging, particularly
in the context of arrays of interacting units, making
our results noteworthy. The physical setup used for
validation represents a 1:10 scaled prototype of a point-
absorber array comprising six identical buoys capable
of free motion in six degrees of freedom. Despite the
disparity between the irregular wave environment em-
ployed in the experiments and the numerical simula-
tions, our linear model accurately captures the heaving
motion of the devices. Notably, the front row of WECs,
facing the incoming waves, generally exhibits the least
average motion error, while the non-linear effects be-
come more pronounced deeper within the array. We
calculate the absorbed power for both individual WECs
and the entire farm based on the motion data, and
our numerical results show good agreement with the
experimental findings.
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