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Informing early design decisions through
functional analysis of maintenance drivers:

Application in marine renewables
N. Algarra and A. Dong

Abstract—Operational expenditures dominate the cost of
long field-life systems, with maintenance comprising a sig-
nificant proportion for many systems. However, engineers
lack the tools to assess maintenance during conceptual
design. Familiar systems mitigate this problem by pro-
viding historical maintenance data from which empirical
models can be derived. Emerging technologies, like marine
renewables, lack operational maintenance data. As a result,
engineers must make decisions with no historical data
and minimal, if any, operational experience. The high
operations cost incurred from basic maintenance tasks, and
the loss of energy production during maintenance, further
highlight maintenance as a critical cost driver. This paper
develops a data-driven model to estimate maintenance in-
tervals of long field-life systems during conceptual design.
The model links the elementary functions of a compo-
nent to maintenance requirements. Relative maintenance
considerations were determined by mining function and
maintenance data from manuals of long field-life systems.
Machine learning was applied to generate a function-
maintenance model from the maintenance data. The model
consisted of functions grouped into buckets of increasing
maintenance demand. The machine learning model was
applied to an exemplary long field-life system, a wave
energy converter, to explore possible redesigns to reduce
maintenance costs. This paper shows that maintenance
costs, actions and intervals can be confidently accounted.
The function-maintenance model offers two beneficial im-
pacts: it reduces life cycle cost uncertainty, and allows
engineers to make informed decisions during conceptual
design when redesign costs are at their lowest.

Index Terms—Functional analysis, Design for mainte-
nance, Early design, Concept evaluation . . .

I. INTRODUCTION

OVER the anticipated lifespan of a marine renew-
able energy device, operations and maintenance

(O&M) are expected to account for up to one-third
of the project’s total cost [1]–[3]. For example, Neary
[4] uses 6 inputs to predict O&M costs, 5 of which
explicitly call out maintenance:

• Marine ops → Performing onsite maintenance
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• Shore-side ops → Towing the device shore-side to
perform maintenance

• Replacement parts → Recoverable parts used dur-
ing maintenance

• Consumables → Parts consumed during mainte-
nance

• Downtime → What a maintenance program looks
to minimize

Though O&M accounts for a significant portion of
project costs, it is nearly impossible to estimate until
the latter design stages when the detailed design,
environmental factors, and location are determined. At
this stage of the project, O&M is treated as a cost to be
mitigated as opposed to a design variable that can be
optimized. Whether the relevant evaluation criteria of
a particular marine renewable is the levelized cost of
energy or the total cost of ownership, O&M remains
a significant cost driver and a key factor influenc-
ing commercial viability. Yet, existing research for the
prediction of maintenance requires an extant, com-
pleted design with materials and component choices
detailed. These approaches are more about predicting
maintenance costs after a design is completed rather
than designing with potential maintenance costs in
mind. This research aims to develop an approach to
maintenance cost assessment during the early stages
of system design, typically called conceptual design.

Work in the design for maintainability field has
shown that maintenance is not a set of actions that
occur to a device once designed and manufactured.
Instead, maintenance is an aspect of the device that is
inherent to the culmination of design decisions made
throughout the development of the device [5], [6]. From
the idea that O&M is primarily maintenance and that
maintenance is a result of the design of a system, we
conclude that O&M cost reduction should start during
conceptual design.

If O&M should be considered during conceptual de-
sign, can it be meaningfully reduced? Do design tools
exist to understand the drivers of O&M to make design
changes effectively? This research aims to determine
if the myriad of functions embodied in a long field-
life system have an identifiable relationship with their
maintenance demands – that is, do certain functions
have more maintenance requirements than other func-
tions? Furthermore, can heuristics be developed – to be
used in early design – to guide and inform designers of
the relative maintenance implications of the functions
within a system? By providing this information during
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conceptual design, design engineers could alter the
functional approach to reduce the usage of functions
determined to have a “significant” impact on O&M or
make changes to the physical architecture to facilitate
maintenance.

The approach developed in this research relies
on machine learning applied over maintenance data.
Function-maintenance relationships were determined
by mining data from the maintenance manuals of
two long field-life systems: the Learjet 25 series twin-
engine business jet and the CJ610 turbojet engine. The
function implemented by the component and the flow
of energy (e.g., mechanical energy, electrical energy)
and material (e.g., solid, liquid, or mixture) through
the function were determined to create a data point.
Each data point relates a component or assembly
to its function, flow, and maintenance requirements.
The function-maintenance data was then processed
using machine learning to build a model to associate
functions into categories of maintenance requirements.
Heuristics were developed to inform designers on the
maintenance implications of chosen functionality and
to guide informed decision-making from the earliest
stages of development.

The Background section first discusses the relevant
research on conceptual design and the extent to which
operations and maintenance are key drivers of the cost
of systems. Functional modeling and Machine learning
are then discussed. In the Methods section, the Data
mining and Functional modeling processes utilized are
described. Developing the model and Application to
the Laboratory Upgrade Point Absorber explain the
development of the machine learning model from the
data and the application of the function-maintenance
model to the Laboratory Upgrade Point Absorber
(LUPA), an operational research prototype wave en-
ergy converter [7]. In the Results, the findings from
the model’s development, the model’s implications and
the LUPA application are expanded on. The Conclusion
and Future work is then presented.

II. BACKGROUND

A. Conceptual Design

The design of systems typically proceeds along 6
phases: 1. Specification development/planning, 2. Con-
ceptual design, 3. Product design, 4. Production, 5.
Service and 6. Product retirement [8]. This research
concerns the second phase, conceptual design (inter-
changeably called early design). Conceptual design
can best be understood by the inputs and outputs
of the phase. Device requirements in terms of perfor-
mance, development timeline, budget, and measures
of success are vital inputs into the conceptual design
phase; without defining the what and why of a device,
engineers can not effectively make decisions that lead
toward the accomplishment of the design goals. Upon
leaving the conceptual design phase, the design team
will have a rough idea of how the device will oper-
ate, the components and system architecture, and the
functional structure of the device. Ullman [8] describes
the conceptual design phase as “the least managed,

the least documented and the least understood.” De-
sign research echoes the sentiment that the conceptual
design phase is underutilized, overlooked, and sped
through as quickly as possible [9]–[11]. In the specific
field of marine renewables, with few exceptions [12],
[13], the conceptual design phase has been largely
neglected [11]. This is particularly concerning consid-
ering the lack of design convergence; how are different
archetypes assessed before investing significant capital
into a concept?

During the early design phase, most of the lifetime
costs of a device are determined. Exact values vary,
but most scholarship agrees that 70-80% of a product’s
lifetime cost is committed during the conceptual design
phase [8], [14]. Once concrete decisions are made, the
costs incurred to make changes significantly increase
throughout the development phase. “Very roughly, if
the cost to make a change at the product concept stage
is $1, the cost is $10 at the detail design stage and
$100 at the production stage” [9]. The importance of a
focused conceptual design phase is best described by,
“...the decisions made during the design process have
the greatest effect on the cost of a product for the least
investment” [8].

B. Operations and maintenance as a key driver of opera-
tional expenditure

The authors broadly define long field-life systems
as any product where the operational expenditure
(OPEX) will account for a significant portion of the
life cycle cost. The primary aspect of concern within
OPEX is O&M, with extreme cases putting O&M costs
at 60-80% of life cycle costs [9]. The most developed
marine renewable systems, offshore wind farms, have
estimated O&M costs of 30% of the lifetime costs [1],
[2] or of the cost per kWh [15]. Upon entering the
detailed design phase, using the best-case scenario of
committed cost (70%) and O&M costs as a percentage
of lifetime costs (30%), O&M alone has locked in 21%
of the system’s total lifetime cost. The remaining 9%
of lifetime costs attributed to O&M are the costs that
engineers influence.

Thus far in the marine renewable field, O&M has
been treated as a given for a system and is addressed
late in the project when the system’s detailed design
is complete and the project’s location and related en-
vironmental factors are determined. Recent literature
has explored cost reduction through simulating various
O&M strategies, exploring differences in transportation
methods, predicting weather windows and their im-
pact on downtime, as well as location and the relative
value of more energetic environments on power pro-
duction versus maintenance impacts. Simulated strate-
gies ranging from no maintenance to conducting main-
tenance as soon as possible to reduce downtime have
been explored. The results of these studies showed that
no maintenance strategy is not a viable option [16],
[17], indicating to developers that maintenance must be
addressed in the design of the device. While there has
been significant O&M cost reductions through these
means over the last decade, further reduction is still
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needed to make marine renewables an economically
attractive investments.

The design for maintainability field concerns it-
self with the portion of lifetime costs attributed to
O&M that are not locked in upon concept selection.
Design for maintainability can be summarized by
five axioms: simplicity in design, standardized parts,
control of the maintenance environment, simple as-
sembly/disassembly procedures, and clearly identified
parts/connections [5], [6]. These axioms are effective
when leveraged during the detailed design phase.
However, they are ineffective at assessing various
alternative designs prior to a significant investment
towards a chosen design.

Returning to the marine renewable field, a significant
contributing factor to high O&M costs is the lack of
historical maintenance data and the tendency of devel-
opers to keep lessons learned internal [7], [12], [18]. The
reasons behind this lack of transparency and sharing
are not unknown; innovative cost-cutting strategies
and designs could represent a significant commercial
asset to those with the experience and knowledge. The
development and open sharing of assessment tools
for use during early design can help to bridge the
knowledge gap.

C. Functional modeling

Functional modeling is a design method that facil-
itates the decomposition of a system into an abstract
model comprised of elementary electro-mechanical ac-
tions performed or embodied to make a component-
agnostic model of the system. This abstract model
captures the functional approach taken by the designer
to achieve the intended outcome. These elementary
actions, called functions, describe what is happening
to the flow of material, energy, or signal as it passes
through the system. Functions operate on these flows
to transform them into useful work. For example, a
“convert” function operates on the flow of, say, electri-
cal energy to convert it into mechanical energy for the
purpose of spinning a shaft. By abstracting away from
specific electro-mechanical components, designers can
step back and develop a deeper understanding of the
potential design space (i.e., the main ways outcomes
can be achieved). Functional modeling has proven to be
an effective tool for a wide range of tasks including fail-
ure analysis [19], reliability prediction [20] and center-
ing design work on customer requirements [21], among
others. The strengths of functional modeling that this
research relies on are functional modeling’s abstraction
of physical architecture that allows for new insights
to be gained and its utility during early/conceptual
design.

Multiple functional languages have been developed
to meet the specific needs of fields as well as gen-
eral languages intended to encompass all mechanical
design. Hirtz [22] developed one such language by
reconciling multiple previous efforts into a list of 52
functions and 82 flows that are combined to make
a verb-object pair, called a function-flow pair hence-
forth. Functions are organized into 3 levels. Flows

TABLE I: Functions and Flows of example components
at 3 levels

are organized into a hierarchy of 4 levels, though the
4th level will not be used in this research since the
4th level of description contains more detail than is
needed for this research. The lowest level (level 1)
is the most abstract and levels gradually increase in
descriptive specificity. Table I displays two example
components and the components’ functions and flows
at all 3 levels. Function-flow pairs can be extracted
from Table I. The level 1 function-flow pair for the
filter is Change Magnitude Material. Upon decomposing
that verb-object pair, the filter’s level 1 functionality is
realized, to change the magnitude of a flow of material.
The level 2 function-flow pair is Stop Material, and level
3 yields the most descriptive function-flow pair the
filter, to Prevent Particulate.

Since functional modeling is abstract and can suffer
from problems with inter-modeler reliability, it is worth
expanding on the lens through which functionality
can be assessed. Deng [23] groups functionality into
purpose functions and action functions. Purpose func-
tions are descriptions of the designer’s intention and
are generally more abstract, whereas action functions
describe physical interactions. As purpose and action
functions are described at two different levels of ab-
straction, they are not necessarily mutually exclusive.
An example of the difference can be found in the hy-
draulic line in Table I. The purpose – or designer intent
– is to transfer pressure to some location. The action –
or physical description of the system in question – is
to transfer a liquid to some location. The function-flow
pairs could be: Transmit Pressure and Transport Liquid
for the purpose and action functions, respectively. Both
are accurate functional descriptions of a hydraulic line,
but Transmit Pressure is abstracted further. It is possible
to imagine multiple means to Transmit Pressure other
than a liquid; both a solid and a gas could be leveraged
to apply pressure at some location.

Now that we have discussed levels of abstraction,
function-flow pairs, and purpose versus action func-
tions, we have come to the second strength of func-
tional modeling: its use during conceptual design.
During conceptual design, the functional approach
must be selected before specific components are sized
and selected. Herein lies the strength of functional
modeling. Long before an engineer implements, say, a
level 3 function-flow pair of Transmit Pressure and the
component with which to accomplish this task, such as
the hydraulic line from Table I, the engineer chose an
elementary action, to Channel Energy from one location
to another. Though this step was described in a single
sentence, the actual design process could take months
or years before designers get from Channel Energy to
the choice of the specific component selection of a
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hydraulic line to implement this function. Nonethe-
less, the choice of functional approach determined the
potential maintenance costs because there are a finite
number of ways that energy can be transferred from
one location to another.

D. Machine learning
Machine learning has proven effective at extracting

valuable insights from data sets that are too large for
a human, regardless of their expertise in the area,
to comprehend, let alone derive useful information
from [24]. Machine learning models are categorized
into 2 types: supervised and unsupervised learning.
Unsupervised learning is performed when the model
has no prior information on the features or variables
and makes predictions primarily by associating data
points based on similarities. Supervised machine learn-
ing requires that information on what the features in
the data set mean is given to the model. A type of
supervised machine learning model called a Decision
Tree is utilized in this work. This background section
will focus on the relevant information for Decision
Trees.

Decision Trees are a popular machine learning model
whose primary attribute is their simplicity. Decision
trees are often represented as a tree that starts at a
single node and branches out into additional nodes
that can each branch out further. Each node represents
a characteristic of the system (such as its color); de-
pending upon the attribute of that characteristic (e.g.,
the color is red), the tree is traversed in the “red” direc-
tion rather than, say the “green” direction. Once a node
fails to reduce information entropy by a certain preset
parameter or is manually pruned, that branch ceases
to split and becomes a “leaf” node. Each leaf node has
a final determination on any data points following the
branches down to that node. That determination could
be a category or a numeric value.

A decision tree can be used to learn a function-
maintenance model because each piece of information
on the functions, flows and function-flow pairs embod-
ied in a part can serve as a possible node in the decision
tree. Fig. 1 shows a truncated decision tree created
from this research; the topmost node could be phrased
colloquially as “does the level 3 flow Object occur more
than 0 times in this part?”. If yes, proceed down the left
branch to reach “Does the Level 2 function-flow pair
Guide Gas occur 0 times in this part?”. Upon reaching
a node cell – leaf or not – the predicted category
(in this case, relative maintenance bucket) is given,
followed by the probability of the other categories in
increasing numeric order from top left to bottom right.
The predicted category is based on all occurrences of
parts in the training data set that match the series of
binary choices presented through the decision tree and
the category of those data points.

III. METHODS

A. Data mining
The Learjet 25 series represents a typical long field-

life system. The 25 series were produced from 1966

4 OOM

0.01  0.00  0.09  0.20
0.10  0.30  0.30  0.00

L3 Flow Object > 0

2.5 OOM
0.01  0.00  0.15  0.33
0.20  0.11  0.00  0.19

L2 FF Guide Gas = 0

4 OOM

0.01  0.00  0.04  0.10
0.08  0.37  0.40  0.00

2.5 OOM
0.01  0.01  0.16  0.38
0.11  0.17  0.16  0.00

L3 Flow Rotational
Energy = 0

3.5 OOM
0.01  0.00  0.07  0.10
0.10  0.37  0.35  0.00

2.5 OOM
0.01  0.01  0.18  0.42
0.12  0.14  0.12  0.00

3.5 OOM
0.00  0.00  0.06  0.16
0.06  0.37  0.35  0.00

Yes No

Fig. 1: Truncated decision tree shows the series of
binary that the decision tree follows that results in a
predicted category

until 1982, with 500 number still in service worldwide
as of 2006 [25]. With even the newest Learjets over 40
years old, the wealth of knowledge on maintenance
requirements, procedures and timelines is well doc-
umented. It represents an exemplary data set from
which to harvest maintenance information.

The Learjet 25 series and CJ610 turbojet engine main-
tenance manuals were first reviewed to identify all
maintenance actions throughout the manuals. For this
research, “maintenance” is defined as any time an op-
erator or maintenance personnel must inspect, repair,
replace or service a component or assembly. “Mainte-
nance” includes all types of preventative maintenance
– time-based, failure-finding, risk-based, condition-
based and predictive. This broad definition allowed
the authors to capture all interactions with the system;
examples include checking filters for particulate build-
up, applying lubricant, a scheduled overhaul of an
assembly, etc.

Maintenance actions were then limited to those with
a unit of time associated with the action. Maintenance
actions associated with a specific incident were not
included; inspections following an overweight landing
are one example. The Learjet manual provides an
equivalency chart that relates aircraft age, total flight
time, average monthly use, average flight length and
total landings back to flight hours. Flight hours were
used as the standard time measurement as it was the
most frequently used and had a direct relationship
to all other frequency measures. The CJ610 manual
provided information on converting engine power cy-
cles to average flight length, allowing its maintenance
actions to be translated into flight hours.

From the Learjet manual, extracted maintenance ac-
tions were primarily found in the following chapters:
Airworthiness Limitations, Time Limits/Maintenance
Checks, and Servicing. From the CJ610 manual, all
maintenance actions were found in “Engine General”
chapter. The authors manually extracted the main-
tenance information by transcribing the maintenance
task as described in the manual and the associated
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TABLE II: Example maintenance task and derived com-
ponents, functions and flows

time interval into a spreadsheet. The maintenance task
was then examined to determine the critical part(s)
of concern that said maintenance task is seeking to
maintain the functionality of. Based on the author’s
maintenance-centered definitions, the part of concern
was assessed, whether it was a component or an assem-
bly. A component is a part that is replaced wholesale
without further disassembly. An assembly is anything
outside that definition. For example, a hydraulic ac-
tuator, though it contains a variety of parts such as
the piston, cylinder and seal, would generally not
have those parts replaced individually during routine
maintenance. The entire hydraulic actuator would be
removed and replaced, making a hydraulic actuator
a component. Table II contains a few sample data
points with all mined data; notice the maintenance
task “Lubricate ball joint connector” was refined down
to “Ball joint” as that is the part of concern that the
maintenance task is meant to maintain the functionality
of.

B. Functional modeling
Functional decomposition began once the mainte-

nance action, maintenance frequency, and component
versus assembly information were extracted, as well as
crucial part(s) of concern identified from the mainte-
nance actions. As previously described, the functional
basis presented by Hirtz [22] was used as the functional
language for this work. The decision to utilize this
functional language was due to its popularity and
glossary of all functions and flows with a definition
and example of each. The glossary allowed the authors
to maintain a high level of consistency when evaluating
functionality.

Each part of concern was then assessed using the
respective maintenance manual or [26] to determine
functionality. All parts were prescribed at least 1, and
at most 5, function(s) and their respective flow(s) at
all 3 levels of abstraction. When evaluating function-
ality, the authors maintained designer’s intent as the
primary evaluating factor to ensure all functionality
was assessed based on purpose as opposed to action.
Table II shows sample parts, the mined data from their
respective maintenance manual and all information
derived by the authors.

C. Developing the model
Once the data was collected from the maintenance

manuals, processing began to prepare the data to train
and test the model. The model was trained on the fea-
tures: Functions, Flows, Function-Flow pairs, Function

Count, and Component versus Assembly. Functions,
Flows, and Function-Flow pairs were each recorded
separately for all 3 levels, with a value of 0 to 4, based
on the instances of that Function/Flow/Function-Flow
pair being performed by the part in question. Function
count was recorded with a value of 1 to 4, based on
the total number of functions a single part performed.
Component versus Assembly was determined based
on the author’s maintenance-centered definition of a
component and an assembly, as described in the Data
Mining section. Component versus Assembly was the
only categorical feature, with the remaining features
being continuous values.

To ensure the results could be generalized to other
long field-life systems regardless of the maintenance
timescale of the device, the authors decided to con-
duct a categorical regression. By sorting the mean
time between maintenance (MTBM) values into relative
buckets of increasing maintenance demands, the results
would better scale to systems with various average
maintenance intervals. The training data contained
MTBM values ranging from 1.5 to 30,000 flight hours,
with 99% of data points below the midpoint of 15,000
flight hours. It was decided to utilize buckets based
on order of magnitude increases. The ”0 Bucket” was
centered on a 1 flight hour maintenance interval, with
each whole bucket increase being centered on the next
higher order of magnitude. Half orders of magnitude
were utilized to further break down buckets. As an
order of magnitude is defined as a factor of 10 increase,
a half order of magnitude is defined as an increase of
the square root of 10, approximately 3.16. This catego-
rization was chosen because the differences between
buckets are easily understood and can still be utilized
regardless of the starting point of the “0 Bucket”.
Since all buckets are defined relative to each other, the
difference in MTBM between a part in the “2.5 Bucket”
and the “3.5 Bucket” maintains a consistent 1 order of
magnitude increase, regardless of the specific MTBM
values on which the buckets are centered. This will
allow designers to use this model even if the MTBM
range of their specific system is not consistent with the
data used to train this model.

Once all data points were assigned to their main-
tenance bucket, the data was split into a training
set and a testing set, containing 70% and 30% of all
data points, respectively. The training set was used to
develop a decision tree using the rpart and rpart.plot
packages in R. The complexity parameter value is the
minimum decrease in the coefficient of determination
(R2) required for the model to expand on a particular
branch of the decision tree. By adjusting the complexity
parameter, the authors could balance model accuracy
and overfitting the decision tree to match the training
data.

D. Laboratory Upgrade Point Absorber application

To investigate the external validity of the model, the
authors applied the model to the Laboratory Upgrade
Point Absorber (LUPA) developed at Oregon State
University. LUPA is a tank-scale, open-source wave
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energy converter meant for researchers and developers
to help offset the high costs of tank-scale testing and
to encourage the open sharing of data and lessons
learned. The reasoning for selecting LUPA to apply our
model to was similar to that of the reasoning in se-
lecting maintenance manuals for the model that being
accessibility. LUPA, specifically designed as an open-
source platform, was the only fully designed and man-
ufactured wave energy converter with publicly avail-
able documentation. The authors reviewed 3D models,
the bill of materials and other device documentation to
determine the functionality of the 162 unique electro-
mechanical parts in LUPA. All features used to train
the model were documented then formatted and input
into the model. The model was executed and output
a predicted bucket of maintenance frequency for each
part.

The authors collaborated with an expert design engi-
neer (unaffiliated with this project or LUPA) to provide
an external assessment of the maintenance frequency of
selected LUPA parts to compare to the model’s results.
Dr. Robert Paasch, Professor Emeritus of Mechanical
Engineering at Oregon State University, was the expert
design engineer. Dr Paasch’s research background is
in design theory, applied design processes, reliabil-
ity and survivability in the marine renewable energy
and automotive engineering fields. Of the 162 unique
electro-mechanical parts in LUPA, 30 unique parts were
selected at random from maintenance buckets in the
same ratio of buckets as the model predicted. The num-
ber of parts selected from each predicted maintenance
bucket are as follows: 7 parts from both the 2 and 3.5
OOM buckets, 12 parts from the 2.5 OOM bucket and
4 parts from the 4 OOM bucket. The list of parts was
provided to Dr. Paasch with the following prompt:

A list of 30 unique electro-mechanical parts
is included along with all 3D model parts
and assemblies, the bill of materials and all
available design documents. Please review
these parts and assess the relative mainte-
nance demand of the parts. For the purposes
of this work, “maintenance” is defined as any
time an operator or maintenance personnel
must inspect, repair, replace or service a com-
ponent or assembly. “Maintenance” includes
all types of preventative maintenance – time-
based, failure finding, risk-based, condition-
based and predictive. Please assign all parts to
the 4 relative maintenance buckets; the buck-
ets are based on order of magnitude (OOM)
relative differences. The 4 buckets are listed
below with a brief description.

• 2 OOM bucket - parts in this bucket re-
quire the most frequent maintenance

• 2.5 OOM bucket - parts in this bucket
require maintenance approximately 3.16
times, a half OOM, less frequently than
parts in the 2 OOM bucket

• 3.5 OOM bucket - parts in this bucket
require maintenance approximately 10
times, 1 OOM, less frequently than parts

in the 2.5 OOM bucket and 13.16 times, 1.5
OOMs, less frequently than parts in the 2
OOM bucket

• 4 OOM bucket - parts in this bucket re-
quire the least frequent maintenance; 2
OOMs, 1.5 OOMs and a half OOM less
frequent maintenance than the 2 OOM
bucket, 2.5 OOM bucket and 3.5 OOM
bucket, respectively

IV. RESULTS AND DISCUSSION

This section presents the results, first discussing the
function-maintenance model created and its role as
an early design tool. Then, the section describes the
predictive capability of the model and compares the
outcome with the opinion of an expert design engineer
with years of experience in marine renewable energy
and design for maintainability. The results section con-
cludes with redesign recommendations for a current
wave energy converter based on the model’s prediction
of maintenance requirements.

A. Function-maintenance model
The resultant function-maintenance decision tree cre-

ated is 11 layers deep with 25 possible leaf nodes,
shown in Fig. 2. Of the 8 possible relative maintenance
buckets (0, 1, 2, 2.5, 3, 3.5, 4, 4.5), only 6 of them
are predicted by the model. This is to be expected
as the two buckets that are never predicted, 0 OOM
and 4.5 OOM, contain a combined total of 17 data
points out of the 1995 total data points. Of the 6
predicted maintenance buckets, 3.5 OOM and 2.5 OOM
were the most frequently predicted. Based on the data
used to train the model and its spread, the 0 OOM
bucket was centered at a frequency of 1 flight hour
maintenance interval. This centers the 3.5 OOM bucket
on a 3,162 flight hour maintenance interval and the
2.5 OOM bucket on a 316 flight hour maintenance
interval. Please note that calculating the exact value
that the maintenance buckets are centered around is
only possible because all of the training data is on the
same time scale. Regardless of the exact values, the
model provides valuable information on the relative
frequency of two predictions. A component predicted
to be in the 2.5 OOM bucket must be maintained 10
times as frequently as a component predicted to be
in the 3.5 OOM bucket. Depending on the particular
system and how maintenance intervals are measured,
this could mean 100,000 cycles versus 1,000,000 cycles
or monthly versus annual maintenance.

The authors explored a random forest model to
ascertain whether a more accurate model could be
generated since random forests are generally more
accurate than decision trees. A random forest model
could be described as the average of a large number of
decision trees, each trained on a different subset of the
training data and on different features. Though random
forests are less prone to overfitting the particulars of
the training data, we decided to utilize a decision tree
for 2 reasons. The decision tree consistently predicted
more conservatively (more frequent maintenance) than
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Fig. 2: Function-maintenance decision tree

the random forest. In the scenario of the early design
phase of a marine renewable energy system, a more
conservative estimate is preferred. Once the detailed
design phase is reached, information on specific com-
ponents can be used to refine maintenance frequency.
The second reason was that a decision tree could
be represented by a single image (Fig. 2), whereas
a random forest contains the results of hundreds of
different decision trees.

The decision tree can be used to predict the results
of data sets with thousands of parts or it can be used
by a single engineer exploring a handful of different
functional configurations through a series of binary re-
sponse prompts on the functional attributes of the part.
Predictions are straightforward and the relative impact
of functional characteristics can be seen as the tree is
traversed. Referring to Fig. 2, the node reached after
responding in the affirmative twice, which could be
expanded as “Does the level 3 flow of Rotational Energy
occur 0 times in this part?” shows one such example.
If the engineer responds in the affirmative, the part in
question is more likely to be in the 2.5 OOM bucket
than the 3.5 OOM bucket. Recall from earlier that this
could be the difference between a monthly inspection
of this part or an annual inspection of this part. If we
explore each node beyond the predicted bucket, we
can gain additional insights into the prediction prob-
ability and develop a confidence interval. Within each
bucket is 2 × 4 matrix of probabilities corresponding
to the 8 relative maintenance buckets the training data
fell into. As in the previous example, the engineer is
exploring functional configurations. By examining the
node following the affirmative answer (a prediction of
2.5 OOM), the probability of the adjacent buckets, 2
OOM and 3 OOM, are 19% and 13%, respectively. The
probability of that part falling within ± 0.5 OOMs is
69%. A similar calculation done after responding in the

negative informs the engineer that the probability of
that part falling into the 3.5 or 4 OOM bucket is 74%.

Another application of the model is backtracking up
the tree to avoid high-maintenance functions. When
defining the functional structure of the device or a
subsystem, the designer can create a functional design
and then explore back up the tree, considering which
functional decisions are flexible, to determine if any
changes can be made to eliminate high maintenance
frequency functionality.

This model can be utilized during the earliest stages
of design before significant resources are committed to
developing a design that may be inherently more main-
tenance intensive than possible alternatives. In a field
such as marine renewables, where there has been very
little design convergence, this tool can help designers
to make informed decisions across the diverse design
space.

B. Building confidence in the model

As discussed in the methods, the model was trained
on 70% of the extracted data and tested against the re-
maining 30%. The comparison of those results is shown
in the confusion matrix in Fig. 3. The columns of the
confusion matrix are the known maintenance buckets
from the test data, while the rows are the predicted
maintenance buckets for the same test data. Diago-
nally from the top left to bottom right are correctly
predicted data points. Values above the grey diagonal
were predicted to require more frequent maintenance
than the actual maintenance frequency. Values below
the diagonal were predicted to require less frequent
maintenance than the actual maintenance frequency.
The model has an overall accuracy of 40.1%, but a
broader understanding of the prediction can be gained
from Fig. 3. The intersection of the 3 OOM row and
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Fig. 3: Confusion matrix of known versus model pre-
dicted maintenance values

column shows that the model predicted only 2 of 60
parts known to be in the 3 OOM bucket. One cell
above and below represents the instances of the model
predicting a maintenance interval ± 0.5 OOM greater
or less than the known value. The model predicted 27
parts into the 2.5 OOM bucket and 23 parts into the 3.5
OOM bucket; this 1 OOM prediction spread captures
52 of 60 known 3 OOM parts.

It is relevant to acknowledge that this confusion
matrix is built from the data trained on the Learjet
and CJ610 maintenance manuals and used to test that
same data. A limitation of the model is that it may not
accurately predict the maintenance requirements of a
generic long field-life system but may be too tuned
to an aircraft’s particular maintenance demands. For
example, the level 2 function-flow pair Guide Gas de-
scribes all aerodynamic external parts of the plane and
engine. This function-flow pair is likely significantly
more common in airplanes than other long field-life
systems. The abstract nature of functional modeling
partly offsets these novelties of an airplane’s functional
structure. The level 2 function-flow pair Guide Gas can
be viewed in its level 1 function-flow pair of Channel
Material, which is more universally applicable and
could apply to the hydrodynamics of the hull structure
of a wave energy converter or of a subsea turbine yet
still applying to the lift imparted on the airfoil of a
wind turbine or of airplane wing.

As described in the Laboratory upgrade point absorber
application methods section, this model was applied to
a sample wave energy converter (the results of which
are discussed in the following section). As opposed
to examining the specific results of that application,
in Fig. 4 the model’s predictions are compared to the
expert design engineer’s assessment. The confusion
matrix in Fig. 4 can be read the same as Fig. 3, with
the grey diagonal indicating the model and expert
assessing a part into the same maintenance bucket.
Above the diagonal represents the model assessing
a part requiring more frequent maintenance than the
expert assessed and vice versa for below the diagonal.

From Fig. 4, the model predicted the same relative
maintenance bucket as the expert design engineer 6
times, more conservatively 17 times, and less conser-
vatively the remaining 7 times. The model’s inaccuracy
at higher OOM buckets is not surprising due to the
nature of functional decomposition. The cell found in
the 4 OOM column and 2 OOM row can be examined
to understand this issue better. The damper plate is
one of the 3 parts referred to by this cell. The damper

Fig. 4: Confusion matrix of model predicted versus
expert design engineer assessed maintenance values
for 30 LUPA parts

plate is a solid circular piece of 6061 aluminium at the
bottom of the spar that has lead ballast secured to it.
When viewed functionally, the damper plate performs
2 function-flow pairs (listed at the 2nd level), Change
Mechanical Energy and Stabilize Solid. These function-
flow pairs describe the plate as stabilizing the weights
secured to it and increasing the coefficient of drag of
the spar. Both of these functions maximize the hull’s
relative motion to the spar and are essential to the cor-
rect functioning of the device. Despite its importance,
the damper plate is just a solid piece of metal with
no moving parts and should not warrant maintenance
actions at the highest frequency level. Though this is
a case of the model predicting more maintenance than
is necessary, it shows that the model is capturing the
functional importance of the damper plate. Like any
tool or software used in engineering, this model still
requires an engineer to review the results and assert
their judgment, but the model can reduce the number
of parts an engineer needs to assess.

C. Laboratory upgrade point absorber application

This section describes an application of the model
to redesign LUPA, a wave energy converter, to reduce
its maintenance costs. LUPA is a piece of laboratory
equipment. It was not designed or intended for the
activities and environmental conditions that a com-
mercial wave energy converter will be expected to
withstand. As such, design considerations that would
be paramount to a commercial wave energy converter,
like maintainability, took a lower priority than design
considerations related to LUPA’s role as an open-source
platform for analyzing concepts, validating numerical
models, and innovating control schemes.

The results from the LUPA application come from
possible physical or functional redesigns. All redesigns
are given from a maintenance-centric point of view
and will not account for other possible design con-
siderations. The redesigns presented are intended as
examples of modifications to the physical or functional
architecture of the device that could be stimulated by
examining the functional drivers of maintenance more
closely and from an earlier stage in development.

1) Carriage rail securement: The first redesign consid-
ered is in regard to the system that allows for vertical
translation of the hull along the spar. Fig. 5 shows a
simplified version of the system. The carriage rail is
secured to the spar via 10 screws extending through
the carriage rail into the spar, 3 of the holes for those
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screws are visible in Fig 5. The carriage at the top of
Fig. 5 is the top carriage rail that the hull is secured to.

Upon analyzing the parts of this system, we find that
the screws securing the carriage rail onto the spar are
in the 2 OOM bucket, but the rail itself is in the 4 OOM
bucket. From these results, we are clued into examining
the screws and their function as a possible area for
redesign.

Regarding the physical configuration and accessibil-
ity for maintenance, 2 things are concerning, visibil-
ity and accessibility. The screws are set into a hole,
meaning they need to be viewed straight on where the
carriage, and therefore the entire hull, is located and
moving. To safely perform one possible maintenance
task, say, verifying torque of the screws are within an
acceptable range, the carriage and hull would need
to be locked in place to allow maintenance personnel
to access the screws. Suppose this is deemed unsafe
to perform during in situ maintenance. In that case,
the device may need to be removed from the water
onto a maintenance vessel or towed to shore, increasing
the operations cost to perform this relatively frequent
maintenance task. If the engineers decide the main-
tenance task is to perform a visual inspection of the
screws, possibly to verify a mark that indicates rotation
of the screw, the hull would still need to be locked
into place in multiple positions to allow for visual
inspection of all screws.

Noting the potential maintenance difficulties, possi-
ble options to explore include: repositioning the screw
to a more accessible location, securing the rail to the
spar through other means and removing the need for
screws by changing how the spar and hull move rela-
tive to each other. Expanding on the last two options,
how could the functionality of the rail system – Guide
Mechanical Energy – be performed without the need for
screws? Securing the rail to the spar via stitch welding
is an option; the need to inspect is still present, but the
inspection is now offset from the motion of the hull
and the failure of individual stitches can be seen more
easily. Another option is removing the rail entirely and
utilizing a linear sleeve bearing or rollers directly onto
the spar itself.

2) Belt clamps: The second redesign prompted by
the model results is for the clamping system that
secures the top and bottom of the belt that drives
the generator as the hull oscillates. The belt clamps
consist of a toothed plate that matches the teeth on
the belt, a flat plate that applies even pressure to keep
the belt teeth engaged on the toothed plate and a
mount that secures the 2 plates. The model predicted
these 3 parts to be in the most frequent maintenance
bucket, 2 OOM. Whether inspecting the physical parts
or their functional decomposition, the essential role
that the clamps provide for the device is immediately
apparent. The clamps have 3 vital functions: Position
Object, Stop Mechanical Energy and Increment Mechan-
ical Energy; these function-flow pairs correlate to the
clamps maintaining the alignment of the belt with the
sprocket that drives the motor, stopping the movement
of the belt and increasing friction against the belt.

A maintenance action may be to release the clamp to

Fig. 5: 3D model of LUPA showing the carriage,
carriage rail and spar. Model has been simplified to
improve visibility. Note the 3 screw holes that secure
the carriage rail to the spar.

inspect for wear on the belt teeth, the toothed clamp,
and the flat clamp. Unfortunately, the tension would
have to be released on the belt to inspect for wear
on any of these parts. Releasing tension will require
re-tensioning post-inspection, which may require ad-
ditional stabilization and equipment that needs to be
accessible during routine maintenance. As a research
prototype, this is of little concern, but for an ocean-
deployed device, a vital aspect of the power take-off
requiring frequent – and challenging – maintenance
may lead to unacceptable downtime.

A possible redesign of this system is to separate
the clamping action and the tensioning of the belt. A
continuous belt “clamped” by a toothed idler at the
top and bottom could be inspected more efficiently
as a belt tensioner could adjust tension in the belt to
allow for easier belt removal. Additionally, a continu-
ous belt could be rotated during routine maintenance,
distributing the wear on the belt across the entire
length. This redesign would not address the root cause
of the high maintenance frequency, but it would allow
for a quicker and more thorough inspection of this vital
system.

V. CONCLUSION

This research contributes to the design theory and
design for maintainability fields in 2 manners. First,
the research shows that functional decomposition can
be related to maintenance intervals with a degree
of confidence. In other words, a part’s maintenance
requirement is inherently related to the elementary
functions that it performs. Second, the machine learn-
ing model of function-maintenance can be utilized
in conceptual design to assess functional models and
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conceptual/high-level designs for their relative mainte-
nance requirements. The current state of the design for
maintainability field provides guidelines to improve
maintainability but lacks assessment tools; this model
works to close that gap. As shown through this paper’s
focus on marine renewables, this research has particu-
lar relevance to the subset of long field-life systems
lacking historical maintenance data and a dominant
design.

A. Future work
Future work includes expanding the data set used

to train the model with maintenance information from
diverse long field-life systems, codifying the functional
decomposition of maintenance tasks to ensure con-
sistent results, and applying the model towards the
assessment of early design concepts.
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