
Abstract— In the present work a semi-analytical model is 
applied to solve the wave diffraction and the heave 
radiation-problems around a spherical WEC, in the context 
of linear potential theory. The applied methodology is 
based on the discretization of the flow field around the 
body using coaxial ring elements, which are generated 
from the approximation of the sphere’s meridian line by a 
stepped curve. For each type of element, the Laplace 
equation is formulated and an eigenfunction expansion for 
the velocity potential is made. The latter is approximated 
with Fourier series which are derived based on the 
separation of variables principle. The requirements for 
continuity of the potential function and its derivative at the 
boundaries of neighboring ring-shaped macroelements are 
being satisfied.  
The outcomes of the theoretical analysis are supplemented 
and compared with numerical and high fidelity CFD 
simulations. Numerical results are given from the 
comparison of the three formulations, and some interesting 
phenomena are discussed concerning the accuracy of the 
applied methodology and the viscous effects on the floater. 

Keywords—CFD formulation, Exciting forces, 
Hydrodynamic coefficients, Numerical results, Spherical 
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I. INTRODUCTION

oday, humanity is facing the great pressure of fossil
fuels exhaustion and environmental pollution. This
obliges governments and industries to make 
accelerated efforts on producing green energy. The 

focus is spotted on the marine environment which is a 
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vast source of renewable energy. Among several classes 
of designs proposed for wave energy conversion, 
spherical Wave Energy Converters (WECs) have received 
considerable attention. The problems of water wave 
diffraction and radiation by a sphere have been examined 
by a substantial amount of literature, i.e., [1], [2], [3], [4], 
to name a few, whereas in the works of [5], [6], [7], [8] 
linear hydrodynamic effects on a spherical WEC have 
been examined. All these research works are based on 
potential flow methodologies. Nevertheless, over the last 
decade there has been a significant interest in 
Computational Fluid Dynamics (CFD) modelling due to 
its detailed results, focusing also on spherical WECs [10], 
[11]. Recently, Kramer et al., [12] conducted highly 
accurate and precise heave decay tests on a semi-
submerged sphere. In their study the experimental 
outcomes were compared with the results from several 
numerical models based on linear potential flow, fully 
nonlinear potential flow, and the Reynolds-averaged 
Navier-Stokes equations.  

In the present work a semi-analytical model is applied 
to solve the wave diffraction- and the heave radiation- 
problems around a spherical WEC, which is either semi-
submerged or fully submerged under the free surface, in 
the context of linear potential theory. The outcomes of the 
theoretical analysis are supplemented and compared with 
numerical software and high fidelity CFD simulations.  

II. MATHEMATICAL FORMULAE

We consider a free-floating submerged sphere of 
radius 𝑎, as depicted in Figure 1. The sphere is considered 
to be exposed to the action of regular waves with 
amplitude 𝐻/2 and wave frequency 𝜔 in constant water 
depth 𝑑. The centre of the sphere is located at a distance ℎ 
below the free surface (see Figure 1).  A cylindrical co-
ordinate system (𝑟, 𝜃, 𝑧) is introduced located at the 
seabed, with the 𝑧-axis pointing upward, whereas a 
spherical coordinate system (𝑟, 𝜃, 𝜑) is assumed located at 
the geometric centre of the sphere. In the present semi-
analytical formulation, viscous effects are neglected, 
whereas the fluid is assumed incompressible. 
Furthermore, the fluid’s motions are assumed small, so 
that the linearized diffraction and radiation problems can 
be considered. The flow is governed by the velocity 
potential, 𝛷 = 𝑅𝑒[𝜑𝑒ି௜ఠ ], which is written as: 
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φ = φ଴ + φ଻ᇣᇧᇤᇧᇥ
஦ವ

+ 𝜉ଷ̇φଷ, (1) 

Here, φ଴ is the velocity potential of the incident harmonic 
wave, φ଻ is the scattered potential for the sphere fixed in 
the waves, and φଷ is the radiation potential induced 
around the sphere due to its forced heave oscillations 
with unit amplitude. Also, 𝜉ଷ̇ denotes the complex 
velocity potential of the body in heave direction. 
 The velocity potential of the undisturbed incident 
wave can be expressed using Jacobis’s expansion as: 

φ଴ = −
𝑖𝜔𝐻

2

cosh(𝑘𝑧)

𝑘𝑠𝑖𝑛ℎ(𝑘𝑑)
൥ ෍ 𝜀௠

ஶ

௠ୀ଴

𝑖௠𝐽௠(𝑘𝑟) cos(𝑚𝜃)൩ (2)

Here, 𝐽௠ denotes the 𝑚 −th order Bessel function of first 
kind and 𝜀௠ is the Neumann’s symbol. Also, the wave 
number and the wave frequency 𝜔 are related by the 
dispersion equation.  

In accordance with Equation (2) the diffraction and the 
heave radiation velocity potentials φ஽ , φୖ of the flow field 
around the sphere are written as: 

φ஽ = −
𝑖𝜔𝐻

2
൥ ෍ 𝜀௠

ஶ

௠ୀ଴

𝑖௠𝛹஽,௠(𝑟, 𝑧) cos(𝑚𝜃)൩ (3) 

φଷ = 𝛹ଷ,଴(𝑟, 𝑧) (4) 

The complex velocity potentials φ஽ , φୖ have to fulfill 
the Laplace differential equation in the fluid domain, and 
the proper boundary conditions on the free water surface 
and the seabed, and an appropriate condition in far field. 
Also, the velocity potentials should satisfy the conditions 
on the sphere’s wetted surface 𝑆. 

For the sphere considered in the present analysis, the 
diffraction and the radiation wave potentials involved in 
Equations (3), (4) have been established through the 
method of matched axisymmetric eigenfunction 
expansions. According to this method, the flow field 
around the sphere is subdivided in coaxial ring-shaped 

fluid regions (see Figure 2), in each of which different 
series representations of the velocity potentials are made. 
The adopted series expansions are selected in such a way, 
that the kinematic boundary condition at the horizontal 
walls of the sphere, the linearized condition at the free 
surface, the kinematic one on the seabed and the 
radiation condition at infinity are a priori satisfied. Using 
Galerkin's method, the various potential solutions are 
then matched by the requirements for continuity of the 
hydrodynamic pressure and radial velocity along the 
vertical boundaries of adjacent fluid regions, as well as by 
fulfilling the kinematic conditions at the vertical walls of 
the sphere. This procedure delivers the linear systems of 
equations for the determination of the unknown 
coefficients needed for the series representation of the 
velocity potential in each fluid region. The method has 
been extensively presented in [12]. Nevertheless, the 
expressions for the functions 𝛹஽,௠ , 𝛹ோ,଴ for each 
macroelement are presented in the Appendix.   

Having solved the first order boundary value problem, 
the exciting forces applied on the spherical floater and its 
added mass and radiation damping coefficients are 
calculated as follows: 

Fℓ = −𝑖𝜔𝜌 ඵ φ஽

ௌ

𝑛ℓ𝑑𝑆, ℓ = 1,3,5 (5) 

𝑎ଷଷ −
𝑖

𝜔
𝑏ଷଷ = 𝜌 ඵ φଷ

ௌ

𝑛ଷ𝑑𝑆 (6) 

where 𝑆 is the sphere’s mean wetted surface and 𝑛ℓ are 
the generalized normal components defined by 𝑛 =

(𝑛ଵ, 𝑛ଶ, 𝑛ଷ); 𝑟 × 𝑛 = (𝑛ସ, 𝑛ହ, 𝑛଺), 𝑟 being the position 
vector of a point on the wetted surface with respect to 
the reference coordinate system of the sphere. 

III. CFD FORMULATION – MAPFLOW SOLVER

The validation is conducted with the use of CFD. The
solver in which these numerical experiments were condu- 

Fig. 2.  Discretization of the flow field around a sphere. 

Fig. 1.  Schematic representation of the examined spherical 
absorber. 
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cted is MaPFlow, an in-house developed code that uses 
the finite volume method to solve the incompressible 
Navier-Stokes equations and allows for multiphase 
modelling with the use of the volume of fluid (VOF) 
formulation. MaPFlow is based on the Artificial 
Compressibility method (AC) for velocity-pressure 
coupling and accepts general polyhedral multi-block 
meshes. In the AC method, an artificial (pseudo-time) 
derivative is added in the system of equations by 
introducing the fictitious equation of state 

డఘ

డ௣
|ఛ =

ଵ

ఉ
 

allowing to correct the pressure field with the divergence-
free constraint in iterative steps. This equation of state 
assumes a relation between density 𝜌 and pressure 𝑝. 
Also, it contains the artificial speed of sound 𝛽 > 0 which 
is a numerical parameter that controls the convergence. 
With τ we express the pseudo-time. The iterative 
procedure is performed implicitly with the use of the 
Gauss-Seidel method and a linearization of the steady 
residual (spatial terms). Also, the preconditioner of Kunz 
[19] is used in order to accelerate the convergence. The
augmented system of equations reads:

ଵ

ఉఘ೘

డ௣

డఛ
+ ∇ ∙ 𝑢ሬ⃗ = 0,  (7) 

𝜌௠

𝜕𝑢ሬ⃗

𝜕𝜏
+ 𝑢ሬ⃗

𝜕𝛼௟

𝜕𝜏
𝛥𝜌 + 𝜌௠

𝜕𝑢ሬ⃗

𝜕𝑡
+ 𝑢ሬ⃗

𝜕𝛼௟

𝜕𝑡
𝛥𝜌 + ∇ ∙ (𝜌௠𝑢ሬ⃗ ∙ 𝑢ሬ⃗ ) 

+∇𝑝 = ∇ ∙ 𝜎ധ + 𝐹஻ (8) 

ఈ೗

ఘ೘ఉ

డ௣

డఛ
+

డఈ೗

డఛ
+

డఈ೗

డ௧
+ ∇ ∙ (𝛼௟𝑢ሬ⃗ ) = 0, (9) 

Equations (7,8,9) are the continuity, the x-y-z 
momentum and the advection of the volume fraction. 
𝑝, 𝑢ሬ⃗ , 𝛼௟ indicate the primitive solution variables. These are 
the pressure, the velocity vector and the volume fraction 
respectively. Also, 𝜌௪ is the density of water and 𝜌௔ is the 
density of air. Lastly, 𝐹஻  is the vector of all the external 
forces to the system. We refer to [13] for details on the 

values of 𝛽 and the wave generation-absorption inside 
the computational domain (numerical water tank). 

The density of mixture is calculated with the help of 
the volume fraction 𝜌௠ = 𝛼௟𝜌௪ + (1 − 𝛼௟)𝜌௔. In the same 
way the dynamic viscosity of mixture is calculated. 𝛥𝜌 is 
the density difference from heavier to lighter fluid. The 
tensor 𝜎ധ incorporates the viscous stresses which in our 
case are equipped with an eddy viscosity turbulence 
model to account for the energy of subscale interactions. 
In the case of free surface flows a modified version of the 
𝑘 − 𝜔 𝑆𝑆𝑇 model is used. The reader is referred to [20]. 

In terms of discretization, the solver admits several 
time-stepping schemes and the recovery of accuracy in 
space at the interface of computational cells is performed 
with different reconstruction schemes for every variable 
ranging from a piecewise linear reconstruction up to 
compressive reconstruction schemes, which satisfy the 
hydrostatic variations on pressure. Details can be found 
in [13], [14]. Finally, the hyperbolic representation of the 
AC system allows for the use of a Riemann Solver for the 
convective fluxes. In MaPFlow, the approximate Riemann 
solver of Roe is used. 
 In this work, CFD simulations were performed only for 
the diffraction cases for both the semi and fully 
submerged sphere. The flow was considered laminar 
with a first cell height 1e-4 m with 20 layers. The grid was 
refined in the free surface region to capture the incident 
waves resulting in CFD mesh composed of 7.5 million 
cells. The incoming waves are in the linear region with an 
amplitude of 0.09m. Regarding the mesh resolution it was 
selected based on the frequency of ω=0.90 rad/s. In the 
free surface vicinity 20 points per wave height were 
resolved and 150 points per wavelength. Regarding the 
time step used, it was chosen based on the wave 
frequency resulting in 800 steps per wave period. A slice 
of the computational mesh employed focused near the 
sphere for the submerged case can be seen in Figure 3. 
Also, in Figure 4 the wave propagation for the selected ω 
is depicted.  

IV. NUMERICAL FORMULATION

 Based on applied numerical formulation the velocity 
potential at each point of the field is obtained as the 
superposition of the potentials due to pulsating 

Fig. 3.  A slice of the computational domain for the CFD 
simulations for the fully submerged cylinder. The mesh in the free 
surface region is refined to capture the incident waves. 

Fig. 5.  Discretization of the sphere’s wetted surface into 2160 
elements for the numerical formulation  

Fig. 4.  Wave train propagation for ω=0.90 rad/s 
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singularities (sources) distributed over the wetted surface 
of the sphere. Thus, the fluid potential can be written as: 

𝜑଻(𝑥, 𝑦, 𝑧) =
1

4𝜋
ඵ 𝑄(𝜉, 𝜂, 𝜁)

ௌ

𝐺(𝑥, 𝑦, 𝑧, 𝜉, 𝜂, 𝜁)𝑑𝑆 (10) 

Here 𝑄(𝜉, 𝜂, 𝜁) is the strength (i.e. density) of the 
singularity at (𝜉, 𝜂, 𝜁); the 𝐺(𝑥, 𝑦, 𝑧, 𝜉, 𝜂, 𝜁) is the Green 
function for finite water depth as given in [15]; 
 𝑥, 𝑦, 𝑧, 𝜉, 𝜂, 𝜁 are rectangular coordinates and 𝑆 is the 
sphere’s mean wetted surface.   
 The Laplace differential and the corresponding 
boundary conditions are automatically satisfied. By 
satisfying the kinematic boundary condition on the 
submerged surface of the sphere, the following integral 
equations can be obtained: 

1

2
𝑄௝(𝑥, 𝑦, 𝑧) +

1

4𝜋
ඵ 𝑄(𝜉, 𝜂, 𝜁)

ௌ

𝜕𝐺(𝑥, 𝑦, 𝑧, 𝜉, 𝜂, 𝜁)

𝜕𝑛
𝑑𝑆 = −

𝜕φ଴

𝜕𝑛 (11) 

The Eq. (11) is treated by subdividing 𝑆 in plane 
quadrilateral or triangular elements with singularities 
located at the geometrical center of the element. The 
integral in Eq. (11) is approximated by a finite series of P 
terms, i.e., P is the number of plane elements. Thus, a 
linear system of P equations is obtained which is solved 
with respect to the source’s strengths 𝑄(𝜉, 𝜂, 𝜁). Once 
𝑄(𝜉, 𝜂, 𝜁) has been computed for each element the 
potential of the flow can be easily determined from Eq. 
(10). The theoretical background of this three-
dimensional method is described in detail in [16], [17], 
[18], thus it is no further elaborated herein. For the 
present calculations a total of 2160 elements have been 
applied for the discretization of the sphere’s wetted 
surface (see Fig. 5). 

V. SIMULATION & RESULTS

A. Semi-submerged sphere

In the present study a semi-submersible sphere of
radius 𝑎, floating at a water depth 𝑑 = 10𝑎 is initially 
considered. Here the center of the sphere is located at the 
free surface, i.e., ℎ = 0. The results from the theoretical 
formulation are compared with the outcomes from the 
numerical and CFD analysis. In the latter modelling the 
computational domain exceeds 40 sphere diameters in the 
x direction and 30 diameters in the y-direction. Damping 
zones of length 2 diameters are employed at the domain 
boundaries. In Table 1 the dimensions of the coaxial ring 
elements for the hemisphere are depicted. These are 

applied to the theoretical formulation presented in 
Section II. 

The most consuming part of the theoretical analysis is 
the evaluation of the Fourier coefficients in each fluid 
domain. For the present calculations, 𝑖 = 70 and 𝑚 = 7 
terms are considered for the velocity representation of the 
outer fluid domain, whereas 𝑛 = 80 and 𝑚 = 7 for the 
lower fluid domains.  

Table 1: Dimensions of the coaxial ring elements for the 
semi-submerged sphere 

α1 0.217α h1 9.06α 
α2 0.435α h2 9.14α 
α3 0.600α h3 9.24α 
α4 0.714α h4 9.34α 
α5 0.800α h5 9.44α 
α6 0.866α h6 9.54α 
α7 0.916α h7 9.64α 
α8 0.953α h8 9.74α 
α9 0.979α h9 9.84α 
α10 0.995α h10 9.93α 
α11 α h11 10.00α 

In Fig. 6 the horizontal and vertical exciting forces on 
the semi-submerged sphere are presented. The results are 
normalized by the factor: 𝜌𝑔𝑎ଶ(𝐻/2). It can be seen that 
the outcomes of the presented methodologies (theoretical 
and numerical formulations) attain similar results. These 
are also in excellent agreement with the results from the 
CFD modelling in terms of the vertical force. Regarding 
the horizontal force it is evident that CFD simulations 
predict the peak earlier in the potential formulations. 
Additionally, the amplitudes of the horizontal force are 
smaller in the CFD simulations. This is expected since the 
in the horizontal direction viscous effect are more 
pronounced. 

Fig. 7 depicts the heave hydrodynamic parameters of 
the sphere, normalized by the term 𝜌𝛼ଷ for the 
hydrodynamic added mass and by 𝜔𝜌𝛼ଷ for the damping 
coefficient. The results from the theoretical analysis are 
compared to the corresponding ones from the numerical 
formulation with excellent correlation. However, some 
discrepancies can be observed, regarding the added mass 
at high values of 𝜔, i.e., 𝜔 > 0.6. Hence, the theoretical 
formulation realized numerically by the coaxial ring-
shaped fluid regions should be carefully used.   

B. Fully submerged sphere
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In the sequel the sphere of radius α is considered fully 
submerged. The distance between the free surface and the 
body’s centre is ℎ = 2𝑎, whereas the water depth is 
remained constant (i.e., 𝑑 = 10𝑎). In Table 2 the 
dimensions of the coaxial ring elements for the sphere are 
depicted. The latter are related to the theoretical 
formulation applied in the present paper. For the present 
calculations, 𝑖 = 70 and 𝑚 = 7 terms are considered for 
the velocity representation of the outer fluid domain, 𝑛 =

80 and 𝑚 = 7 for the lower fluid domains, and 𝑖 = 70 and 
𝑚 = 7 for the upper fluid domains. 

In Fig. 8 the horizontal exciting forces and moments 
and the vertical exciting forces on the fully submerged 
sphere are presented. The results are normalized by the 
factor: 𝜌𝑔𝑎ଶ(𝐻/2) and 𝜌𝑔𝑎ଷ(𝐻/2). Also, in Fig. 9 the 
heave hydrodynamic parameters of the fully submerged 
sphere, normalized by the terms 𝜌𝛼ଷ and 𝜔𝜌𝛼ଷ are 
compared between the two methodologies (theoretical 
and numerical). It can be seen that the outcomes of the 
presented methodologies (theoretical and numerical 
formulations) attain similar results. These are also in 
excellent agreement with the results from the CFD 
modelling.  

Table 2: Dimensions of the coaxial ring elements for the 
fully submerged sphere 

Radii hp hl 
α1 0.217α h1 7.00α h1 1.00α 
α2 0.435α h2 7.06α h2 1.06α 
α3 0.600α h3 7.15α h3 1.15α 
α4 0.714α h4 7.25α h4 1.25α 
α5 0.800α h5 7.35α h5 1.35α 
α6 0.866α h6 7.45α h6 1.45α 
α7 0.916α h7 7.55α h7 1.54α 
α8 0.953α h8 7.65α h8 1.64α 
α9 0.979α h9 7.74α h9 1.75α 
α10 0.995α h10 7.85α h10 1.84α 
α11 α h11 7.93α h11 1.93α 

As far as the comparisons between the theoretical and 
the numerical results, regarding the sphere’s 
hydrodynamic coefficients, are concerned, it can be seen 
that the added mass derived by the theoretical analysis 
attain in general higher values compared to the ones from 
the numerical software. Thus, the presented theoretical 
analysis shows limitations concerning the accurate 
estimation of the aforementioned physical quantities.  

Fig. 6.  Non-dimensional exciting forces on the semi-submerged 
sphere derived by the theoretical analysis: (upper figure) horizontal 
force; (lower figure) vertical force. The results are compared with the 
numerical and CFD outcomes.   

Fig. 7.  Non-dimensional hydrodynamic characteristics of the 
semi submerged spherical floater: (upper figure) heave added mass; 
(lower figure) heave damping coefficient. The results are compared 
with the numerical outcomes.   
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VI. CONCLUSION

In this paper, the exciting forces and the hydrodynamic 
coefficients of a spherical floater are investigated 
theoretically in the frequency domain under the action of 
linear waves. Based on the method of matched 
axisymmetric eigenfunction expansions, the flow field 
around the sphere is subdivided in coaxial ring-shaped 
fluid regions in each of which different series 
representations of the velocity potentials are made. By 
comparing the results of the theoretical formulation with 
numerical and CFD outcomes, the following conclusions 
were drawn: 
 the numerical results and the results from the

simulation of the semi-submerged sphere using
coaxial ring elements regarding the exciting forces

and moments are similar. This holds true also for the 
fully submerged sphere case;  

 the theoretical results for the added mass of the
sphere attain some discrepancies compared to their
numerical counterparts. These can be traced back to
the limitations of the theoretical analysis concerning
the accurate estimation of the aforementioned
physical quantities of the spherical floater;

 the CFD results are overall in good agreement with
the inviscid methodologies. The amplitude of the
forces is smaller compared to the potential
formulations which is expected due to the viscosity
effects.  In the case of the semi submerged sphere the 
peak frequency is predicted earlier than the inviscid
methodologies while in the fully submerged case the 
comparisons are better.

The present investigation can be further extended in 
order to examine the second order effects on the 
hydrodynamic performance of a spherical floater under 
the action of both monochromatic and bichromatic wave 
trains.   

APPENDIX 

For each type of the macroelement the following 
expressions for the functions 𝛹஽,௠ , 𝛹ோ,଴ defined in 
Equations (3) and (4) are derived: 
Outer ring-element (𝑟 ≥ 𝑎, 0 ≤ 𝑧 ≤ 𝑑) 

1

𝑑
𝛹௝,௠(𝑟, 𝑧) = 𝑔௝(𝑟, 𝑧) + ෍ 𝐹௝,௠,௜

ஶ

௜ୀଵ

𝐾௠(𝑎௜𝑟)

𝐾௠(𝑎௜𝑎)
𝑍௜(𝑧), 

 𝑗 = 𝐷, 3 

(A1) 

Fig. 8.  Non-dimensional exciting forces and moments on the fully 
submerged sphere derived by the theoretical analysis: (upper figure) 
horizontal force; (middle figure) vertical force; and (lower figure) 
horizontal moment. The results are compared with the numerical 
and CFD outcomes.   

Fig. 9.  Non-dimensional hydrodynamic characteristics of the 
fully submerged spherical floater: (upper figure) heave added mass; 
(lower figure) heave damping coefficient. The results are compared 
with the numerical outcomes.   
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𝑔஽(𝑟, 𝑧) = ቊ𝐽௠(𝑘𝑟) −
𝐽௠(𝑘𝑎)

𝐻௠(𝑘𝑎)
𝐻௠(𝑘𝑟)ቋ

𝑍଴(𝑧)

𝑑𝑍′଴(𝑧)
, 

𝑔ଷ(𝑟, 𝑧) = 0 

(A2) 

The terms 𝐻௠, 𝐾௠ are the m-th order Hankel function of 
first kind and the modified Bessel function of second 
kind, respectively. Also, 𝑍௜are orthonormal equations 
equal to:   

𝑍଴(𝑧) = ൥
1

2
ቈ1 +

sinh(2𝑘𝑑)

2𝑘𝑑
቉൩

ିଵ/ଶ

cosh (𝑘𝑧) (A3) 

𝑍௜(𝑧) = ൥
1

2
ቈ1 +

sin(2𝑎௜𝑑)

2𝑎௜𝑑
቉൩

ିଵ/ଶ

cos (𝑎௜𝑧) (A4) 

where 𝑎௜ are the roots of the transcendental equation. 
Upper ring-elements (𝑎௣ ≤ 𝑟 ≤ 𝑎௣ାଵ, (𝑑 − ℎ௟) ≤ 𝑧 ≤ 𝑑,

𝑙, 𝑝 = 1, … ,10) 
1

𝑑
𝛹௝,௠(𝑟, 𝑧) = 𝑔௝(𝑟, 𝑧) + 

෍ൣ𝐹௝,௠,௜𝑅௠௜(𝑟) + 𝐹௝,௠,௜
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∗ (𝑟)൧
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(A5) 

𝑔஽(𝑟, 𝑧) = 0, 𝑔ଷ(𝑟, 𝑧) =
𝑧

𝑑
− 1 +

𝑔

𝜔ଶ
(A6) 

𝑅௠௜(𝑟) =
𝐼௠(𝑎௜𝑟)𝐾௠൫𝑎௜𝑎௣൯ − 𝐼௠൫𝑎௜𝑎௣൯𝐾௠(𝑎௜𝑟)

𝐼௠൫𝑎௜𝑎௣ାଵ൯𝐾௠൫𝑎௜𝑎௣൯ − 𝐼௠൫𝑎௜𝑎௣൯𝐾௠൫𝑎௜𝑎௣ାଵ൯
(A7) 

𝑅௠௜
∗ (𝑟) =

𝐼𝑚൫𝑎𝑖𝑎𝑝+1൯𝐾𝑚(𝑎𝑖𝑟) − 𝐾𝑚൫𝑎𝑖𝑎𝑝+1൯𝐼𝑚(𝑎𝑖𝑟)

𝐼𝑚൫𝑎𝑖𝑎𝑝+1൯𝐾𝑚൫𝑎𝑖𝑎𝑝൯ − 𝐼𝑚൫𝑎𝑖𝑎𝑝൯𝐾𝑚൫𝑎𝑖𝑎𝑝+1൯
(A8) 

The terms 𝐼௠ is the m-th order modified Bessel function of 
first kind and 𝑍௜(𝑧) are orthonormal equations which are 
derived from Equations (A3), (A4) after substituting 𝑑 =

ℎ௟ and 𝑧 = 𝑧 − 𝑑 + ℎ௟ . 
Lower ring-elements (𝑎௣ ≤ 𝑟 ≤ 𝑎௣ାଵ, 0 ≤ 𝑧 ≤ ℎ௣, 𝑝 =

1, … ,10) 
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(A9) 

𝑔஽(𝑟, 𝑧) = 0, 𝑔ଷ(𝑟, 𝑧) =
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whereas for 𝑛 = 0 it holds: 

𝑅௠଴(𝑟) =

൬
𝑟

𝑎௣
൰

௠

− ቀ
𝑎௣

𝑟
ቁ

௠

൬
𝑎௣ାଵ

𝑎௣
൰

௠

− ൬
𝑎௣

𝑎௣ାଵ
൰

௠ (A13) 
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For 𝑝 = 0, Equation (A9) can be reformed as: 
1

𝑑
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