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Experimental validation of rollout-based
Model Predictive Control for Wave Energy
Converters on a two-body, taut-moored point
absorber prototype

Zechuan Lin, Xuanrui Huang, and Xi Xiao

Abstract—Model predictive control (MPC) has proven its
effectiveness in improving the energy capture efficiency
of wave energy converters (WECs) subjected to physical
constraints. A further step toward MPC’s real-world ap-
plication requires to speed up its online computation to
meet the limited computational power of an industrial
controller. To this end, an improved MPC method based
on a rollout technique has been proposed, whose idea is
to decouple the optimization and prediction horizons, so
as to achieve long-horizon performance with short-horizon
optimization. This rollout-based MPC has previously only
been validated in simulation. In this study, it is put through
wave tank testing and validated experimentally. A two-
body, taut-moored point absorber prototype is constructed
and the rollout-based MPC is implemented in real time.
Experiment results confirm its energy efficiency as well
as constraint satisfaction against the conventional MPC,
and with this satisfactory performance its computational
advantage is highlighted.

Index Terms—Wave Energy Converter, Model Predictive
Control, Wave Tank Testing

I. INTRODUCTION

N further reducing the levelized cost of energy for

wave energy converters (WECs), advanced control
can play a significant role [1]. For a typical point
absorber WEC, the theoretical energy-maximizing con-
dition can be derived in the frequency domain [2], and
practical approximations such as the reactive control
[3], latching [4], and velocity tracking [5] have been
developed. Although simple and effective, these meth-
ods suffer from the incapability of handling various,
device-specific constraints, such as the maximum dis-
placement, generator force, and converter power. In the
last decade, the dominant control solution for WECs is
model predictive control (MPC), termed “the numerical
era” [6]. At each execution step of MPC, the system
trajectory during a finite future horizon is predicted
using a mathematical model, based on which the con-
trol sequence that yields the highest energy output
within constraints is solved with optimization. Then,
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the first control move is applied to the system, and the
above process is repeated at the next step [7]. MPC
has proven its effectiveness in addressing a variety of
WEC constraints, such as uni-directional power flow
and the operating range of an electric generator [8].
However, the real-world implementation of MPC faces
the obstacle of online computation burden, since the
optimizations need to be solved in real time, whereas
the computation force of an industrial controller is
limited.

One of the major approaches to speeding up compu-
tation is parameterization. In MPC, the optimization
variable is a discrete sequence of control trajectory,
whose dimension is typically high, since a long predic-
tion horizon is necessary for satisfactory energy perfor-
mance. By contrast, in methods like pseudospectral [9]
and moment-based [10] parameterizations, the trajec-
tory is represented by a combination of a set of base
functions. In this way, the overall problem dimension
can be reduced, but the optimization could also become
nonlinear. In [11], an improved MPC is proposed based
on a rollout technique inspired by artificial intelligence
[12]. In this method, only a few control moves need to
be solved, while the remaining trajectory is calculated
by simulating a fixed control law termed the “rollout
policy”. By adopting a reactive control as the rollout
policy, the problem can be maintained as quadratic
programming. It has been shown by simulation case
studies that long-horizon energy performance can be
achieved with short-horizon optimization, so the com-
putation burden is reduced considerably [11].

However, rollout-based MPC has not been imple-
mented on a real WEC and validated experimentally.
The necessity of experiments for WEC control can be
highlighted in the following dilemma. On the one
hand, real WEC systems, especially those to be de-
ployed in the sea, are usually much more complex than
the simulation environment. Effects that the widely-
used linear hydrodynamic model cannot take into
account include the nonlinear viscous force [13], the
Coulomb-type mechanical friction [14], the mooring
force [15] and the multiple degrees of freedom (DoF)
motion [16]. On the other hand, practical control can
only be based on simplified modeling to ensure its
computational compactness in real time [6]. Hence,
wave tank testing or even sea trails remain the ultimate
standard for control validation. Recently, the WEC
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community has seen a number of experimental studies
regarding advanced control, including a hardware-
in-the-loop implementation [17], real-time MPC with
wave tank testing [18] [19], and a linear time-invariant
controller LiTe-Con [20] and its constraint-improved
version LiTe-Con+ [21].

In this study, a novel WEC experimental platform
is constructed. The device is a two-body, taut-moored
point absorber similar to an actual application de-
ployed in the sea [22]. This platform has unique fea-
tures against the existing ones (e.g., the WaveStar pro-
totype [20] and the heaving cylinder based on a fixed
structure [19]) including the presence of a mooring
system and multi-DoF motion and thereby stands as
a good testing environment for control evaluation.
Control-oriented modeling is applied and then both the
conventional and rollout-based MPC are implemented
and compared.

The contributions of this study are as follows. 1)
Real-world performance of the rollout-based MPC is
experimentally confirmed. 2) The effectiveness of sim-
plified, control-oriented modeling of a complex WEC
system is illustrated. 3) The concept of general approx-
imate MPC, previously explored in [11] and [19], is
further validated in terms of robustness against model
mismatching, sub-optimality, and parameterization. 4)
Finally, the successful demonstration gains unique en-
gineering experience for the WEC community.

The remainder of this article is organized as follows.
The WEC model and wave force estimation will be
introduced in Section II. The conventional and rollout-
based MPCs are proposed in Section III. The WEC
prototype and control implementation are described in
Section IV. The experimental results are presented in
Section V.

II. WEC MODEL AND WAVE FORCE ESTIMATION
A. Point Absorber Model

The dynamics of a single-body, heaving point ab-
sorber WEC can be described by

(M + My)2(t) + Roz'(t)—i—/o hy(t — 7)2(7)dT
+ Kz(t) = w(t) + u(t),

where ¢t is continuous time; 2, z, and % are the body’s
displacement, velocity, and acceleration, respectively;
M 1is the body’s mass; M is the infinite-frequency
added mass; Ry is the linear friction coefficient; h,
is the radiation impulse function; K is the buoyancy
stiffness; w is the wave excitation force; and u is the
PTO force.

By further representing the radiation kernel with
a polynomial transfer function, establishing the
continuous-time state space model, and discretizing
this model with the zero-hold method of sampling time
T, the following discrete-time model can be obtained

x(k+1) = Ax(k) + Bw(k) + Bu(k) (2)

@)

where k is the discrete time, x = [#,2,rT]T € R” is
the system state with r € R""2 being the radiation
subsystem state, and A, B are the system matrices. For
their derivation, see [7].
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B. Wave Excitation Force

The wave excitation force is originally an external
input. But to estimate its value with techniques like
the Kalman filter, it is now modeled as the sum of
n, sinusoidal components. Let the ith component be
p;, its derivative be p;, and its frequency be w;. So
an additional state p = [p1,p1, ..., Pn,,Pn,)" including
these components is incorporated in the system

2818 2 Bl
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where @) and ) denote the direct sum of matrices and
the Kronecker product, respectively. The measurable
signals of the system are the velocity and displacement,
namely, y = [%,2]T and C = [I3,025(,—242n,,)]. Finally,
by setting the noise parameters of the model and
observation, the estimation of wave excitation force
can be obtained using a classical linear Kalman filter
(omitted here). This method is called Kalman filter with
a harmonic oscillator (KFHO) [23]. The future wave
forces can be predicted by a linear auto-regressive (AR)
model, where the future values are modeled as linear
combinations of historical values. The AR model has
proven to be very suitable for ocean waves [6].

III. MODEL PREDICTIVE CONTROL
A. Traditional Model Predictive Control

Let the maximum displacement and PTO force be z,,
and u,,, respectively. The conventional MPC solves the
following optimization at each step k:

k+N—1
=
st.: x(i+1) = Ax(i) + Bu(i) + Bw(i),
i=k,..,k+N-1
i=k+1,.. k+N
i=k,...,k+N-—1 (5)

Sl (aa(i) + (i 1))

max
w(k),...,u(k+N—-1)

—Zm S X2(i) S Zmy

—Um S ’LL(Z) S U,

where x; and x, denotes the velocity and displace-
ment, respectively. In other words, at each step a con-
trol sequence u(k), ..., u(k+ N — 1) during a prediction
horizon N is solved by maximizing the total out-
put energy within constraints. The problem parameter
is the observed state z and wave force information
w(k),...,w(k + N — 1), and since the system is linear,
this problem is a parametric quadratic program (pQP)
as detailed in Appendix A.

B. Rollout-based Model Predictive Control

The rollout-based MPC [11] can be viewed as a
parameterization of the original problem, where the
prediction horizon N is separated into N = N; + Ny;
N, is the optimization horizon, which determines the
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Fig. 1. Principles of conventional and rollout-based MPC methods

dimension of the final qQP, while N, is the rollout
horizon, during which the PTO forces are calculated
based on a fixed control law. The optimization of the
rollout MPC can be described as

k+N1+No—1
_ s (i) (xy (i i1
o, X ; 5 (i) (x1 (i) + x1 (i + 1))

sit.: x(i+ 1) = Ax(7) + Bu(i) + Bw(i),
i=k, .. k+N +Ny—1
i=k+1,.,k+N;
Uy, <u(l) <up, =k, .., k+ N —1
w(i) = p(x(i)), i=k+ Ni,..k+ N1+ Ny—1. (6)

where 1 denotes the rollout policy. In other words, it
is assumed that after /V; steps, the system is controlled
by p for additional N, steps, and the optimal control
sequence during the first IV; steps is solved, such that
the total energy during N; + N steps is maximized.
Also, note that the constraints are imposed on the first
N, steps only. The purpose of rollout is to decouple
the prediction and optimization horizons, so as to
achieve long-horizon energy performance with a small
optimization dimension. The rollout policy is chosen
as a reactive control as discussed in [11]. The qQP
formulation is given in Appendix B. The principles of
the two MPC formulations are illustrated in Fig. 1.

—2Zm < X2(1) < Zpm,

IV. EXPERIMENT SETUP AND MODEL IDENTIFICATION
A. WEC Prototype

The constructed point absorber prototype consists
of a buoy and a spar. The buoy is floating on the
water surface and oscillating with waves. The spar is
semi-submerged and moored to a concrete block on
the water floor through six mooring lines. The two
bodies are connected through a ball screw, which is
rigidly connected to a rotary generator. The device
adopts a “taut-moored” design: the mooring lines are
heavily pretensioned by letting the mass of the spar
be much smaller than its buoyancy force. This design
allows for much more effective force transmission from
waves to the generator than a slack-moored device and
thereby improves the power capture efficiency [22].
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TABLE I
KEY PARAMETERS OF THE WEC TESTING PLATFORM

Part Parameter Value
outer radius 0.75 m
Buo inner radius 0.15 m
y draft 0.3 m
mass 508 kg
volume 12 m3
Spar mass 745 kg
P length 2.85 m
plate radius 1.6 m
. pretension 4795 N
Mooring height 175 m

The structure of the device is depicted in Fig. 2. The
design parameters are listed in Table I.

B. Installation

The experiment is conducted at the wave tank labo-
ratory of the National Ocean Technology Center, Tian-
jin, China. The size of the tank is 100 mx18 m, and
the water depth is 4.2 m. The device is fabricated and
then installed in the wave tank as follows. First, it is
transported to the wave tank by a bridge crane and
lies flat on the water surface. Next, the concrete block
is lifted from the bottom so that half of it is above
the water. Then, the mooring chains are manually con-
nected from the spar to the concrete block. Finally, the
concrete block is slowly put down; during this process,
it automatically drags the spar down and rotates the
whole device to the normal position; in the meantime,
the block itself automatically lies down on the bottom.
The photo of the installed device is shown in Fig. 3.

Unlike some other platforms such as [24] where a
structure is built to restrict the body motion to the
heave direction, the position of the considered device
is maintained only by the mooring system. Hence, in
addition to the heave motion, there will also be surge
and pitch motion when the body is excited by uni-
directional waves.

C. Power Take-off and MPC Implementation

The PTO system consists of a permanent magnet
synchronous generator (PMSG), an IGBT-based power

Mooring

Generator

Fig. 2. Structure of two-body point absorber prototype
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converter, and a bi-directional dc source. The control
schematic is as follows: the MPC controller outputs
a force command, this command is converted to the
g-axis current command using field-oriented control
(FOC) of the PMSG, and then a proportional-integral
(PI) current loop is used to track this current command.
The control algorithms are implemented on an NI PXIE
controller with a sampling frequency of 10 kHz. The
equipment is shown in Fig. 3, and the control diagram
is shown in Fig. 4.

Both conventional and rollout-based MPCs are im-
plemented. Control-oriented modeling [13] is applied,
where the two-body, moored system is modeled as a
single body oscillating in heave, and the parameters
are calculated by the boundary element method (BEM)
software NEMOH. The friction damping is identified
separately. The prediction step size is 0.2 s. The op-
timization horizons are 30 (6 s) for the conventional
MPC, covering two wave periods, and 4 (0.8 s) for
rollout-based MPC, and the rollout horizon is 50 (10
s). The rollout-based MPC corresponds to a much-
reduced computation burden. Due to the controller’s
computational limitation, the online solution of pQP
adopts the fast-solving strategy [19], which involves
the inheritance of the last solution, a feasible warm-
start process, and a one-step, interior-point update. The
MPC force command is updated at 100 Hz.

V. RESULTS
A. Regular Waves

In each test case, waves are generated by a wave
maker on the side of the tank. Then, we activate the
control system and let the device run for up to five
minutes. There should be several minutes between
each test to wait for the water surface to recover.
The maximum displacement is set to 0.1 m, while no
constraint is imposed on the maximum force.

First, regular waves with a wave height of 0.2 m and
a period of 3.0 s is tested, and the results are presented
in Fig. 5 and Fig. 6. The following observations can
be made from both figures: 1) the estimation of wave
excitation force shows a quasi-sinusoidal waveform
with certain oscillations, which are primarily due to
model mismatch; 2) the body’s velocity is generally in
phase with the excitation force, which is an important
indicator of wave power capture efficiency; 3) the dis-
placement constraint is satisfied during the operation,

Fig. 3. Photo of point absorber prototype and electrical devices
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Fig. 4. Diagram of the WEC control system

as the buoy’s motion is stopped by the controller and
kept from violating the constraint when it is near the
boundary; 4) the average powers (Pavg) are 38.5 W and
37.6 W, being very close. These observations confirm
that the rollout-based MPC can achieve comparable
control performance to conventional MPC with a very
much reduced computation burden. Moreover, real-
time MPC shows certain robustness against model mis-
match and other disturbances, which can be explained
by its receding-horizon nature as discussed in [11].

B. Irregular Waves

Then, irregular waves are generated with a JON-
SWAP spectrum with a significant wave height of 0.25
m and a peak period of 3.0 s, and the results are
presented in Fig. 7 and Fig. 8. The following obser-
vations can be made: 1) under irregular waves, the
control output by conventional MPC becomes more os-
cillating, while the rollout-based MPC performs more
stable; 2) both methods remain successful in handling
constraints; 3) the rollout-based MPC achieves slightly
higher average power. The superiority in stability and
efficiency against conventional MPC seems counter-
intuitive since the rollout method in its nature is
an approximation of the conventional, finite-horizon
energy-maximizing control. One possible explanation
is that due to the limited computation force in real
time, the fast strategy [19] is adopted and only one
interior-point iteration is carried out at each step. For
the long-horizon optimization of conventional MPC,
the quality of such an immature solution is more
vulnerable to disturbances, whereas that of the short-
horizon, rollout-based MPC is more robust.

VI. CONCLUSION

In this study, the rollout-based MPC proposed ear-
lier is implemented on a two-body, taut-moored WEC
prototype and put through wave tank testing. The
rollout technique simulates the system trajectory with
a reactive controller, so as to reduce the optimization
horizon of MPC while maintaining its performance.
The implementation of MPC is based on a fast-solving
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ventional MPC with s1gr}1f1cantly faster computation. [CA T - C,B -

Moreover, it is observed in our case that rollout-based ] ]

MPC even shows better stability and higher efficiency Azpy = S Oz = : .

under irregular waves. |C2A"| _CzA’_lB -+ CgB]

Af[z] = Aia ef[z] = [Ai_le T ,B] (7)

APPENDIX A The following matrices can be derived:

FORMULATION OF TRADITIONAL MPC
Hyjj = ®2(;)O1;),

Define C; = [1,0,0F ,], C2 = [0,1,0F ,] and the Gxpi) = Py + P2 A1y
following matrices for horizon i: Guw[j) = ®21O1);
T T 1T _7IT
111 P[i] = [62[1']7_@2[1']711' =L
| R A [ @y | ap | = 1| @21y Qop) = [2m17 s 2m 1) um 1 um 1117,
3 . = 1 | P20 = gy, _ T T . 0T
1 1 22” Qx[l‘] - [_A2[i]vA2[i]aOn><zaOn><l] )
Quwij =[O, Ogpip 0isci i ®)
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Let the prediction horizon be N. Let u = [u(k), ..., u(k+
N — 1)]T be the control sequence to be solved and
w(k) = [w(k),...,w(k + N — 1)]T be the sequence of
predicted wave excitation force. Then, the conventional
MPC corresponds to the following pQP:

min
u

uTH[N]u + (GX[N]X(]C) + GW[N]W(]{J))TU

whose parameters are x(k) and w(k) obtained at the
kth step. The problem dimension is N, which should
be sufficiently large.

APPENDIX B
FORMULATION OF ROLLOUT-BASED MPC

Let p(x(k)) = Rgxi(k) + Kyxao(k) be the rollout
policy, which is a reactive control law defined by R,
and K. Define Eg = R;,C1 + K,C2, A, = A + BE,,
and the following matrices for horizon j:

[C1A,] C,B
Ay =1 ¢ |:Onp = g
|C1A]] |C1A7'B C;B]
[C2A,] [ C,B T
Ar2pj) = : ‘ , Or2pj) = L
CoA! | |C2A!"'B C2B]|
Ex[j) = fgAr1fj) + KgArapj)
Ewpj) = RByOrapj) + K Orayj) (10)

The following matrices can be derived:

Haxj) = o (C1 + ®2upj)Aragy) + Eypj) P22 Aray
Gixw(j] = Zo P21j)Or1j) + Epj P20 O
A1 P20 B
Hepi j) = O Hax(;) O
i j] = 20 Hixx[j At
Grwifi,j) = 20 ;) Hax(;) Ot

T
Grwa li,5] = ®f[i] Gxw l45] (11)

Let the optimization horizon be N; and the roll-
out horizon be Ny, and N; + Ny = N. Let u; =
[u(k),...,u(k + N1 — 1)]T be the control sequence to
be solved and wi(k) = [w(k),...,w(k + Ny — 1)]T,
Wz(k) = [U)(k + Nl), ,’LU(k + N1 + N2 — 1)}T be the
predicted wave excitation force sequences. Then, the
rollout-based MPC corresponds to the following pQP:

min  uy "’ (Hpn,) + Hf[Nl,Nz]) u;

uy
H(Gxnv,) + Gax vy, va)) X (F)
HGwn,] + Gewin,, N, W (k)
+wa2[N1,N2]W2(k)}Tu1
s.t. Pivur < dojw,) + Qg yx(k) + QW[NI]Wl(k(:)l.Z)

whose parameters are x(k), w1 (k) and w2 (k) obtained
at the kth step. The problem dimension is N;, which
can be much smaller than N.
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