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Investigation on the extreme peak mooring
force distribution of a point absorber wave
energy converter with and without a
survivability control system

Z. Shahroozi, M. Géteman, and J. Engstrom

Abstract—To determine the optimal design of the wave
energy converter (WEC) that can withstand extreme wave
conditions, the short- and long-term extreme responses of
the system need to be determined. This paper focuses on
the extreme peak force distribution of the mooring force
for a 1:30 scaled point absorber WEC. The basis of this
analysis is the mooring force response obtained from a
WEC-Sim model calibrated by wave tank experimental
data. The extreme sea states have been chosen from a
50-year environmental contour. Here, first, the long-term
extreme response using the full sea state approach is
obtained for three constant damping cases of the power
take-off (PTO) system. Then, using a contour approach,
the expected value of the extreme peak line (mooring)
force distribution is computed for the sea states along
an environmental contour. Further, for the most extreme
sea state, the extreme peak line force distribution is also
computed where a survivability control system, based on a
deep neural network (DNN), changes the PTO damping to
minimize the peak mooring force in each zero up-crossing
episode of surface elevation. The results show that in the
absence of a control system, the zero PTO damping case
is a conservative choice in the analysis of the long-term
response and the design load. For the most extreme sea
state along the environmental contour, the survivability
control system slightly reduces the expected value of the
extreme peak force distribution when compared with lower
constant PTO damping configurations.

Index Terms—Wave energy converter, Deep neural net-
work, Control system, Design load, Long-term extreme
response.

I. INTRODUCTION

HE design load cases (DLCs) for the highest ex-

pected loads, over the lifespan of the wave energy
converters need to be identified to ascertain their sur-
vivability during extreme wave conditions. The best
practices to determine the environmental design loads
are outlined by international standards such as [1-3]
which include recommendations such as the type of
the load and environmental conditions that should be
considered as well as the computation process of the
extreme response distribution.
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To acquire the design load, the short- and long-term
extreme responses have to be obtained. The former
is obtained through a set of statistical methods to
provide an understanding of the largest response of the
device for a specific sea state and time duration. In [4],
Vanem (2015) studied the uncertainties related to the
extreme value analysis considering different statistical
methods such as GEV, Gumbel, Weibull, Frechet, Gen-
eralized Pareto Distribution (GPD), and the average
conditional exceedance rate method (ACER) for three
different data set. The author concluded that there is
large variability based on the extreme value analysis
approach and choosing a singular method or approach
that is entirely favored for this type of analysis is not
a straightforward decision. On the other hand, the
long-term extreme response gives information about
the expected load during the lifespan of the device
which can be obtained through various methods where
the most common ones are the contour approach and
the full sea state approach. The contour approach
searches along the environmental contour line for the
sea state that provides the largest response [1, 5, 6].
This method, however, is often prone to uncertainties
both due to the determination of the environmental
contour itself and neglecting the short-term realization
of the sea states within the contour. To account for this
variability, Ren et al. (2015) in [7] and Muliawan et al.
(2013) in [8] recommended multiplying the expected
(mean) value obtained from the short-term extreme
peak force distribution of the most extreme sea state by
a correction factor of 1.3, which can be determined by
comparing the long-term full sea state responses with
the corresponding ones from the contour approach.
An alternative approach is to consider only a higher
percentile of the chosen short-term extreme peak force
distribution in order to address this uncertainty [1, 5].
Unlike the contour approach, the full sea state ap-
proach requires a large number of sea states from both
inside and around the environmental contour line to
represent the expected long-term response. Coe et al.
(2018), [5], investigated the influence of the number of
sea states that can be considered in the full sea state
long-term approach on predicting the design response
of a spheroid floater WEC. Their findings indicated that
utilizing 50 sea states within the environmental contour
yielded a reliable result for the given WEC. Moreover,
increasing the number of sea states did not significantly
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alter the predicted response level, but it did decrease
the level of uncertainty in the response. Further, the
importance of constructing the environmental contour
is discussed by Edwards and Coe (2019) in [9] where
five environmental contours, i.e. principal component
analysis (PCA), Rosenblatt, Gaussian, Gumbel, and
Clayton, were subjected to their studies for the two-
body floater RM3 WEC. The authors noticed that for
the longer wave energy periods, a larger significant
wave height is predicted for the PCA method. They
emphasized the importance of this observation on the
design decision for mooring tension which is a low-
frequency phenomenon.

The main objective and novelties of this paper are:
to first compare the long-term mooring force response
using the full sea state approach with 180 sea states
for three constant PTO damping configurations; then,
to study the effect of a survivability control system
on the mooring force response and computation of
the expected value of the extreme peak force distri-
bution for the most extreme sea state identified from
along the environmental contour following the contour
approach. The controller is based on a deep neural
network (DNN) with a similar architecture as in [10]
where the control system task is to find the optimum
damping that minimizes the peak force in each zero
up-crossing episode of surface elevation. This study
is the extension of the previous work [11] where the
environmental design load was determined based on
the system response of the mooring force considering
only a constant PTO damping force.

The remainder of this paper is as follows: the the-
ory and method of the wave tank experiment, WEC-
Sim setup, neural network control model, and short-
term and long-term extreme analysis are explained in
Section II. Then, the result of the long-term extreme
response and controller performance in the most ex-
treme sea state is discussed in Section III. Finally, the
conclusion of the paper is drawn in Section IV.

II. THEORY AND METHODS
A. Wave tank experiment

To evaluate the system response of a point absorber
wave energy converter during extreme wave condi-
tions, a 1:30 wave tank experiment was conducted
in the Ocean and Coastal Engineering Laboratory of
Aalborg University, Denmark. The experimental setup
comprised a linear sliding friction-damping power
take-off (PTO), a cylindrical aluminum buoy with el-
lipsoidal bottom, and three pulleys to connect the buoy
from the wave tank to the PTO located in the gantry
via a Dyneema rope, see Fig. 1.

The PTO translator applied constant Coulomb fric-
tion damping by its vertical movement and rubbing
against a Teflon block. Four damping configurations
of Dy, Dy, Dy, and D, were considered. The first
three configurations corresponded to the sliding fric-
tion damping force of approximately 0 N, 7.4 N, and
18.9 N. In the last configuration (D), the PTO was
locked. Only an upper-end stop spring with a spring
coefficient of 5.9 N/mm confined the PTO movement.
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The inputs to the wavemaker were extreme sea states
selected from an environmental contour with a 50-year
return period constructed from the I-FORM hybrid
method for the Dowsing site in the North Sea, see
Fig. 2. The International Electrotechnical Commission
(IEC) [2] recommends the use of 50-year sea states,
which involve significant wave height (H,) and peak
period (1,), as a means to simulate extreme wave
conditions and assess the performance of wave energy
converters during their survival mode [13]. This ex-
plains the selection of a 50-year return period as the
basis of the study conducted here. The construction
of the environmental contour and its rationale have
been thoroughly explained in [11, 14, 15]. Note that the
experiment is conducted for three different wave types
of regular, irregular, and focused waves generated by
wavemaker as shown in Fig. 1. Further explanation
about the wave generation can be found in [16]. How-
ever, the basis of this analysis is irregular waves for
sea states ba, 6, 7, and 8.

The nonlinear phenomena such as overtopping,
wave breaking, and wave breaking slamming were ob-
served during the wave tank experiment. The overtop-
ping phenomenon was more dominant for larger PTO
damping configurations where the movement of the
system was more constrained. On the other hand, the
wave breaking slamming was more seen for the lower
damping configuration and resulted in numerous end-
stop compression. For greater details about the wave
tank experiment setup and results refer to [17] and [16].

B. WEC-Sim model

To provide sufficient training set for the neural
network model, data is augmented using the WEC-
Sim model which is calibrated based on experimental
data. The WEC-5im model includes three one-degree-
of-freedom PTOs that are connected in series to mimic
the motion of the device in heave, surge, and pitch
motion and to give feedback and actuation force. Note
that the physical PTO is a linear friction system that
moves vertically, in contrast to the WEC-Sim PTO
which are simulation blocks that restrict the motion of
the buoy in three degrees of freedom.

The weakly nonlinear effect of the buoy’s dynamic
is captured by computing the nonlinear buoyancy and
Froude-Krylov forces. The drag coefficient in heave is
computed based on curve fitting of the decay test from
experimental to numerical WEC-Sim through the least
square method. To obtain the surge drag coefficient,
the amplitude response operator (RAO) in WEC-Sim
is adjusted to match the experimental RAO. The pitch
drag coefficient is determined by calibrating the WEC-
Sim buoy motion in pitch, using the experimental data
collected from the Qualisys camera as a reference for
the regular waves. This is accomplished through the
application of the least square method [11].

By examining the power take-off (PTO) from the
buoy side and analyzing the equation of motion in
vector form, the WEC-Sim line (mooring) force is char-
acterized as [11]:

mpTOZPTO = Fline + Fendstop + Fpro + Ffp + MpTOg (1)
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Fig. 1: The schematic of the wave tank experiment, retrieved from [12].

Observations: Dowsing

Fig. 2: The environmental contour constructed with the
I-FORM hybrid method with a 50-year return period
for the Dowsing site in the North Sea. In this paper, in
part of the analysis, i.e. the contour approach, sea state
5a, 6, 7, and 8 are considered from which sea states 5a,
6, and 8 were experimented in the wave tank, adapted
from [15].

where the total mass of the translator, including its
attachment, is represented by mpro. The forces of
the end-stop spring, PTO friction, and pulley friction
are denoted by Fendstop, Ffpo, and Fy, respectively.
Additionally, the PTO acceleration and gravitational
acceleration are represented by Zpto and g respectively.

From the instantaneous position of the buoy and
Fi;ine, the force actuation of the PTO WEC-Sim blocks
is determined. See [11] and the equations 8-10 therein
for the derivation of the surge and heave forces and
pitch moment.

The PTO force for WEC-Sim (1) is represented as a
combination of static friction, Stribeck, and Coulomb
components as a function of relative velocity [18]:

ZpTO\ 2\ 2PTO
FfPTO :\/%(Fbrk - FCPTO)eXp< o ( Vst ) ) TSt (2)

ZPTO )

+ Fppotanh(
UCoul

where the breakaway friction and Coulomb forces are
denoted by Fi and Fg,,,, respectively. Additionally,
the Stribeck velocity is defined as vg; = VbV 2, where
uprk is the velocity at which the breakaway friction
occurs. The Coulomb velocity threshold is defined as
Vcoul = Ubrk/10. The relative velocity is denoted by Zpro,
and Euler’s number is represented by e.

The pulley friction force in the WEC-Sim model is
also modeled as a function of velocity based on only
the Coulomb component:

ZPTO
Fy, FCP tanh (vaﬂ) 3)
where the Coulomb force is represented as Fp, =
tpFline, With p, being the friction coefficient of the
pulley. The value of this coefficient was determined
through a series of simple experiments in which the
translator was manually moved downwards at a nearly
zero velocity, while both load cells at the buoy and PTO
side measured the force. By subtracting the measured
forces from both sides, the pulley friction force was
calculated. Then, the pulley friction coefficient was
obtained based on the proportionality of the pulley
friction force to the line (mooring) force measured by
the load cell attached to the buoy [11].

The end-stop force in the WEC-Sim model is repre-
sented as an elastic end-stop module:

kes(lo — lc) + kst zZ — %) + CStZ.J, (Z)
Fes(lo — 1) + ke (2 — g) (i4)

(o)) w

where (i) is for z > I5/2, and %z > 0, (1) is for z > I5/2,
and 2z <0, and (#ii) is for ls/2 — (log — ) < z < I5/2. The
end-stop spring coefficient is kes, and the equivalent
spring coefficient of the structure is represented by
ks. The initial and compressed lengths of the end-
stop spring are denoted by Iy and [., respectively.

4)

F, endstop —
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Additionally, the energy dissipated after the spring is
fully compressed is modeled as a viscous damper with
the coefficient ¢, for 2 > 0. For more information on
the setup of WEC-Sim model, refer to [11].

The performance of WEC-Sim model is evaluated
by comparing the empirical cumulative distribution
function (ECDF) of the peak line forces obtained from
WEC-Sim simulations and experiments. The reader can
refer to [10, 11] to see the performance of the WEC-Sim
model versus experimental data. The simulations are
conducted using 20 different seeds, each with a dura-
tion of 0.18 hours for each damping configuration for
the 1:30 scaled model. This amounts to approximately
11 hours of system response that is fed into the neural
network model for training. It should be noted that the
locked PTO case was not studied due to the inability of
the WEC-Sim model to reproduce the system response
for such a complex case, where nonlinear phenomena
such as overtopping and frequent slack in the line
rope were observed during the experimental campaign
[10]. The analysis of WEC-5im is conducted on a high-
performance computing (HPC) cluster that is provided
by Uppsala Multidisciplinary Center for Advanced
Computational Science (UPPMAX).

C. Neural network model

A deep neural network (DNN) structure is created
to serve as a core of the control system with the
purpose of forecasting the maximum line (mooring)
force in each sea state, to identify the ideal damping
that reduces the peak line force. The peak line forces are
selected for each zero up-crossing episode of surface
elevation. The DNN model is built using Keras in
Python, which runs on the TensorFlow machine learn-
ing framework. The training of the model is performed
on a regular laptop, which takes only a few minutes
[10].

The neural network model consists of eight input
features extracted from WEC-Sim model responses: the
Coulomb force (i.e. sliding friction force), maximum
wave amplitude, wave period, the initial value of the
translator position, velocity, and acceleration, and the
initial and maximum value of the derivative of surface
elevation for each zero up-crossing episode of the
surface elevation. The outputs of the network are the
peak line force value and its probability of extremity,
i.e. being above a certain threshold, in each episode.
The DNN model architecture is shown in Fig. 3. The
flowchart of the control system is shown in Fig. 4.
The optimization loop task is to provide a range of
sliding friction-damping forces to the neural network
model to identify the minimum peak line force and
its corresponding damping force. The training and test
data set to the DNN model are the WEC-sim peak
mooring force for sea state 7 considering 20 seeds
for three damping configurations of Dy, D;, and Ds.
The 80% of the available data is considered to train
the DNN model, and the rest is used to assess the
generalization and performance of the model.

The DNN model performs both regression and clas-
sification tasks, with the latter aiding the regression
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Fig. 3: The architecture of the deep neural network
where the output of regression and classification tasks
are shown as ”"Output-R” and ”Output-C”, respec-
tively.
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Fig. 4: The DNN control system flowchart. The sliding
force refers to the PTO constant coulomb friction force,
adopted from [10].

Minimum Fjne

problem through an attention mechanism that focuses
on extreme forces exceeding a certain threshold. The
attention mechanism is introduced as: y, = § + (7 in
which the predicted peak line force is y,, the output
of the network from the regression task is §, and the
predicted probability of the extreme peak line force
above a threshold of 150 N is denoted as §. Note that
this threshold is selected based on visual observation
of the maximum forces in the most extreme sea states.
The attention factor (¢) is a trainable parameter of the
network that emphasizes extreme events. The training
model is described in the following algorithm [10]:
The model is first trained to minimize the classifi-
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Initialize: parameters ¢, and ¢
1 for each epoch do

2 for each training batch do

3 | Minimize BCE loss function .J; (6)

4 end

5 for each training batch do

6 Calculate peak line force, y, = 9 + (¥
from network outputs (g, %)

7 Minimize MARE loss function J2(6, ¢)

8 end

9 end

Algorithm 1: Training algorithm of the proposed

DNN.

TABLE I: The hyperparameters of the DNN model.
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cation loss function, i.e. considered as Binary Cross
Entropy (BCE), and then minimizes the regression
loss that is taken as the mean absolute relative error
(MARE). The accuracy of the model is computed as
1-MARE as:

1 —
accuracy = 1 — - Z |%| 5)

where n is the number of data points, and the true and
predicted peak line forces are y; and y,, respectively.
The hyperparameters of the DNN model are given in
Table I. The description of these parameters is provided
in [10, 19].

The performance of the DNN model on the test data
set is shown in Fig. 5 which depicts the correlation
between the true (WEC-5im) and predicted peak line
force obtained from the regression task with an accu-
racy (1-MARE) of 84%. Although the attention mech-
anism improves the prediction of the peak line forces,
the DNN performance suggests that more complex
attention mechanisms can be beneficial to capture the
high peak forces in the most extreme sea states such
as sea state 7 here.

Then, the trained network is integrated into the con-
trol block of the WEC-Sim model where the Coulomb
(sliding) friction-damping force is ranged from 0.0 to
20 N in 1.0 N increments. To maintain the neural
network’s accuracy, specifically larger damping values
than the experimental ones that the WEC-Sim model
is calibrated on, are not considered. For a greater
explanation of this control system refer to [10].

D. Short-term extreme response

The short-term extreme response provides informa-
tion on the maximum response of a device, such as
the bending moment or mooring line force, that can be
expected during a specific sea state and time period,
usually equivalent to a storm duration of 1 to 3 hours

Predicted peak line force [N]

Fig. 5: The performance of the DNN model for the
regression task is demonstrated by comparing the pre-
dicted and true peak line forces. The color bar rep-
resents the probability of extreme forces, with higher
probabilities indicating larger peak line forces.

during which the spectral density function of the sea
state is assumed to remain constant [5, 20].

To assess short-term extreme value distribution, the
peak-over-threshold method is employed. This method
investigates the upper tail of peak line (mooring) force
distribution above a certain threshold (u) that is se-
lected for each sea state individually. The outline of
this method is provided as follows [11]:

i. Select the peak line forces (z,) between two con-
secutive zero up-crossing of the surface elevation.

ii. Choose a certain threshold for each sea state. In
the contour approach (i.e. later explained in sub-
section I1I-E) where a few sea states are considered,
the appropriate threshold for each sea state is
identified through the mean residual life plot, and
the scale and shape parameters stability plots.
However, in the full sea state approach where
a large number of sea states should be taken
into account, the threshold for each sea state is
computed as: ji,, + 1.40,, where the mean and
standard deviation of peak forces are y,, and o,
respectively, under the condition that the number
of exceedances is more than 20 and the shape
parameter is negative. If the condition is not met,
the threshold value is progressively lowered until
the criteria are satisfied. A great discussion about
the methods mentioned in this step is presented
in [11].

iii. Fit the generalized Pareto distribution given in (6)
to the exceedances of the peak line force (2, =
xp —u for x, > u ):

1

1= (1+52) T kA01+ B s
Ferp(2p) = * 4 “
1—exp<—f), k=0,2>0

(6)
where a and k are the scale and shape parameters,
respectively. The distribution can be approximated
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Fig. 6: Diagnostic plots for the peak forces with the
control system using GPD fit for sea state 7.

as the exponential distribution in the special case
of k& = 0. The distribution of exceedances has an
upper bound of u — a/k for k < 0, whereas, there
is no upper limit for £ > 0, [21].

iv. Compute the cumulative distribution function
(CDF) of the peak line force on the basis of the
CDF of exceedances [5, 6, 11, 20]:

N;[Ot (1 - PGPD(ZP))> )

Ppcrp(zp+u)=1— <

where N and Ny are the total number of peak
line force and the number of peaks above the
certain threshold that is selected for each sea state
respectively.

v. Calculate the short-term extreme CDF based on
the CDF of peaks obtained in (7) as [6, 11, 20, 22]:

Py (z) = Ppgpp(z) N (8)

where in each 0.18-hour short-term extreme sim-
ulation period (At,), i.e. corresponding to 1-hour
for the full-scale system, the average number of
peak line force is Ny = N(Atg/At) in which the
total simulation length, At, is 20 x 0.18.

For discussion about the selection of peak-over-
threshold method in this case over other statistical
methods for the analysis of short-term extreme re-
sponse refer to [11].

Fig. 6 shows that the GPD fit excellently captures
the tail distribution of the peak forces data above the
threshold of 240 N for sea state 7 considering the sys-
tem response with the survivability controller. This can
be seen by looking at the quantile and probability plots
where the peak line force above the threshold follows
the diagonal line very well. Moreover, the extreme
and peak distributions of this system’s response are
illustrated in Fig. 7.
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Fig. 7: The probability density function (PDF) (in sub-
figure (a)) and the cumulative distribution function
(CDF) (in sub-figure (b)) of the peak and extreme
distributions of the line forces with the control system
for sea state 7 using GPD fit.

E. Long-term extreme response

The analysis of long-term extreme response provides
insight into the expected loads and system response of
an offshore system during its deployment life for a spe-
cific environmental condition. The long-term extreme
response analysis can be conducted using two well-
known methods: full sea state approach and contour
approach [11].

1) Full sea state approach: This approach provides an
accurate and thorough response distribution; however,
it comes at the expense of extensive computational
time. This method requires a large number of sea states
(Hs and T}) selected from the environmental contour to
represent the expected long-term response distribution.
The distribution can then be computed as [1, 8, 11, 22]:

Pu(x) = / / Pttt (tlhas tp)piz, (oo ty)dtydh

ha tp

)

where the occurrence probability distribution of a spe-
cific sea state is stated as py, 1,. Moreover, the so-
called complementary cumulative distribution function
(CCDF) or short-term survival function of the response
(X) is expressed as Pst‘ H.,,T,, and it is described as [11]:

Pst(x) :p(X > I) =1- Pst(z) (10)
where the short-term cumulative distribution function
is nominated as Py (z) for sea states with 0.18 hours
simulation.

Here, 180 sea state samples are considered to study
the full sea state approach. The sensitivity of this
analysis to the number of sea states is discussed in
[11]. The selection of the sea states is explained in the
following steps [5, 11]:
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0.251

Fig. 8: The selected 180 sea states are illustrated in H
and T}, space. The contour lines are the translation of
0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 50 years return
period from full-scale to the small-scale system.

i. Construct the normal standard space (u-space) for
different return periods. Here, 0.001, 0.01, 0.05,
0.1, 0.5, 1, 5, 10, and 50 years return periods
are considered for the full-scale system and are
then scaled down for constructing the small-scale
contours.

ii. Select an equal number of sea states, i.e. 20 sam-
ples here, between each return period. Given 9
return periods that are considered in step (i.), the
total number of sea states would be 20 x 9 = 180.

iii. Transform back the sea states from u-space to H
and T, space using the Rosenblatt transformation,
see Fig. 8.

The equations for the u-space and Rosenblatt transfor-
mations are described in detail in [11], equations (1) to
(7) therein.

2) Contour approach: This approach focuses on iden-
tifying specific sea states along the environmental con-
tour that contribute to the maximum characteristic
responses [1, 22]. Here, 20 seeds of simulations are
considered for sea states 5a, 6, 7, and 8 along the
environmental contour. The procedure involves several
steps:

i. Calculate the short-term extreme response distri-
bution for the sea states located along the envi-
ronmental contour.

ii. Determine the expected value (mean) of these
distributions to pinpoint the sea state associated
with the highest response.

iii. Select the distribution with the maximum expected
value and utilize a percentile of that distribution
as the long-term response.

Compared to the full sea state method, this approach
often requires less simulation time since it only needs
to analyze a small number of carefully chosen sea
states.

Note that the short-term and long-term analyses
in this study are inspired by the WDRT code [22]
and have been modified to suit the specific analysis
conducted in this study.

III. RESULT AND DISCUSSION

Fig. 9 shows the survival function for each individual
sea state in addition to the full sea state survival

function shown by the black line which is the weighted
average of the CCDF for all sea states. As mentioned
in Section II, GPD is used to model the short-term
distribution of each sea state above a certain threshold,
and hence, the full sea state survival function (CCDF)
is depicted above the maximum threshold of all sea
states. Looking at the return period of 9.1 years, the
return level is almost similar for damping configura-
tions of Dy and D;, however, it is significantly lower
for the Dy case. This result suggests that the lower
damping configurations are more conservative choices
if the environmental design loads need to be calculated
with a constant damping configuration. To put this
in perspective, for instance, the environmental design
load in the D, configuration for a 9.1-year return
period can be computed by multiplying the return level
with the load safety factor of 1.35 suggested by [1], i.e.
498.15 N x 1.35 = 672.50 N. In the full-scale system,
this corresponds to 670.50 N x30% = 18.16 MN design
load (for the Dy case), i.e. compared with 16.23 MN
in the Dy case, for a return period of 9.1 x30%° =~
50 years. Note that the load safety factor of 1.35 is
advocated by international standards to be multiplied
with the long-term extreme response in the analysis
of the ultimate limit state (ULS) for the extreme load
conditions [23, 24].

As mentioned in Section II, the contour approach
limits the computation of system response to a few sea
states along the environmental contour and through
identifying the most extreme sea state by computa-
tion of the expected value of the short-term extreme
distribution. Following this, the expected value of the
extreme peak force distribution for sea states 5a to 8
along the environmental contour has been investigated
given the GPD fit, see Fig. 10. Lower damping cases
are demonstrating the largest expected value of the ex-
treme distribution, which is aligned with observations
in the full sea state approach that the lower damping
cases result in a larger long-term response. Further, in
all constant damping cases, sea state 7 displays the
largest expected value with the exception of the Dy
case where sea state 6 shows a similar expected value
as sea state 7. Hence, sea state 7 is identified as the
most extreme sea state.

Given this most extreme sea state, the influence of
a control system on lowering the expected forces is
evaluated in sea state 7 considering 20 seeds. Table II
indicates that the control system described in subsec-
tion II-C has slightly reduced the expected value when
compared with constant damping cases of Dj, and
D;. In the constant damping case of D, however, the
expected value is lower than the control case. This
does not necessarily imply that larger damping values
should be adopted for survivability purposes. In larger
damping configurations, the movement of the buoy is
more restrained, and thereby, it is more susceptible
to the overtopping phenomenon which leads to a
reduction of mooring force. This has been shown in [16]
where looking at the entire history of mooring force
for tested sea states, the peak line force was reduced
when the damping was increased up to a certain level,
above which the peak force increases again drastically
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Fig. 9: subfigures (a), (b), and (c) show the survival
function for constant damping cases f Dy, D;, and
Dy, respectively. The blue lines show the CCDF for
180 sea states while the black line shows the full
sea state survival function. The dashed lines show
different survival levels of 0.2, 0.9, 1.8, 4.6, and 9.1 years
corresponding to 1, 5, 10, 25, and 50 years, respectively,
in the full-scale system.

Fig. 10: The expected value of the extreme peak force
distribution for sea state 5a, 6, 7, and 8 is shown for
constant damping cases of Dy, D, and Dy in sub-
figures (a), (b), and (c), respectively.
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TABLE II: The expected values of the extreme peak
force distribution of sea state 7 for constant PTO damp-
ing cases of Dy, D1, and D,, as well as the case with
the control system.

. Control
Damping case Do Dy Do system
Expected value of 3725N  3785N 3458 N 3674 N

the extreme distribution

due to high relative velocity between water and the
buoy. Note that during the experiment, the overtop-
ping was not measured and the survivability control
only considers the mooring force. The possible reason
that the control system did not significantly reduce
the mooring force in comparison to lower damping
configurations of Dy and D; (i.e. identified as more
critical damping cases following the results from the
full sea state approach) are: 1) due to the accuracy of
the DNN model, the optimal damping has not been
selected correctly for some instances, and therefore,
the resultant line force is higher; nevertheless, the
performance of this controller with similar architecture
has been investigated thoroughly in [10] and it is
shown that there have been only a few times in 658
s duration of sea state 8 that the controller failed to
reduce the peak line force; 2) as also explained in
[10], the existence of any control system alters the
system response, and the new system state at some
zero up-crossings of surface elevation might dictate
higher forces regardless of the choice of damping or
control system. Note that the model studied here does
not account for any impacts caused by biofouling, and
therefore, the inclusion of this factor can be of interest
for future studies.

IV. CONCLUSION

This paper investigates the extreme response distri-
bution of a point absorber wave energy converter by
looking at the long-term response using the full sea
state approach and the expected value of the short-
term extreme response following the contour approach
for three constant PTO damping configurations (i.e.
corresponding to sliding damping friction force of 0
N, 7.4 N, and 18.9 N). Moreover, for the most extreme
sea state, the expected value of the extreme peak force
distribution is also computed with a control system
that adjusts the PTO damping.

The mooring force response is constructed from a
WEC-Sim model that has been calibrated by experi-
mental data. The model is used to simulate the system
response for the sea states considering a 50-year envi-
ronmental contour following the advocacy of the Inter-
national Electrotechnical Commission (IEC). The full-
state approach considers the generalized Pareto distri-
bution (GPD) to model the short-term extreme peak
force distribution and survival function of the system
response for 180 sea states within the environmental
contour for constant PTO damping cases. The most
extreme sea state (sea state 7) is then identified along
the environmental contour with the highest expected
value following the contour approach. For this most

extreme sea state, a control strategy is implemented
based on adjusting the PTO damping through a deep
neural network to minimize the mooring forces. The
control system pursues two tasks of classification and
regression to predict the peak line (mooring) force in
each zero up-crossing episode of surface elevation.

This study is an extension of our previous work,
[11], where the focus has been on the calculation of the
environmental design load and the long-term response
only considering one damping configuration. Here,
extending the analysis to a broader PTO damping
range, the long-term extreme response is compared in
different constant PTO damping scenarios to find the
most conservative case in the computation of the long-
and short-term extreme responses and eventually the
design load. The results indicate that in the case of a
no-control system, the full sea state survival function
and expected value of extreme peak force distribution
are reduced by increasing the constant damping which
implies the sensitivity of the analysis to damping of the
system. This observation is especially important and
infers that the most conservative choice to determine
the design load is the lower damping cases close to
zero.

Further, the control response has been investigated
for the most extreme sea state (i.e. sea state 7) and
shows the reduction of the expected value of extreme
peak force distribution when comparing with the con-
stant Dy and D; cases. However, the control system
was not able to provide a lower expected value of the
extreme peak force distribution than the D case.
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