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Abstract—This paper presents a novel post-processing 

methodology to assess the uncertainty when estimating 

long-term extreme loads acting on an offshore structure, 

which can be associated with the capacity of a structure to 

withstand Ultimate Limit State (ULS) conditions. To assess 

which statistical distributions are best suited to estimate 

long-term extreme loads, goodness-of-fit tests were 

performed using a series of input load time-series 

(Kolmogorov – Smirnov, Kuiper, Cramer – Von Mises, 

Anderson – Darling). As an example, the methodology was 

initially applied to the evaluation of 50-year return load 

estimates acting on the foundation of a generic Submerged 

Pressure Differential (SPD) Wave Energy Converter (WEC). 

Results suggest that current conventional practices based on 

visual inspection may lead to the selection of non-

representative fitting functions, which in turn may lead to 

inaccurate extreme load estimations.  

Ultimately, the methodology described in this paper aims 

to contribute to a probabilistic approach to the definition of 

suitable safety factors, which is expected to reduce the 

uncertainty in key design metrics and consequently 

mitigate the risk for either under- or over-designing an 

offshore structure. 

 

Keywords—concept design, extreme load, goodness-of-fit 

tests, load analysis, uncertainty quantification, Ultimate 

Limit State (ULS), Wave Energy Converter (WEC).  

I. INTRODUCTION 

HE design process of any offshore structure, 

including Wave Energy Converters (WECs), aims to 

assess a series of critical conditions, often 

encapsulated in the concept of ‘limit states’, that define the 

‘design borders’ across which a structure is unlikely to 

respond satisfactorily, potentially leading to functional 

failure(s). Limit state design, also referred to as the Load 

and Resistance Factor Design (LRFD) method, aims to 

quantify such ‘design borders’ with adequate safety 

margins on both the loading and the resistance sides of the 

design inequality. An inherent risk of the LRFD method is 

that the definition of ‘adequate’ may be somewhat clouded 
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by multiple sources of uncertainty, making it challenging 

to assess if a system is likely to be under- or over-designed 

from the inception of the design process.  

At a high-level, structural failure is likely to occur when 

the stress at a specific structural location exceeds the local 

material resistance capacity. Noting that stress can be 

associated with a loading regime, the strength of a 

structural component can be related to the Ultimate Limit 

State (ULS) loading conditions that lead to structural 

failure. For systems such as WECs, which must withstand 

combinations of environmental conditions and / or 

machine states, the ULS load at a specific structural 

location may be defined as the highest of the extreme loads 

associated with each of these combinations. Additionally, 

and as WECs are likely to be subjected to stochastic 

loading environments, extreme loads are typically 

evaluated by adopting reliability-based approaches. For 

example, the guidance issued in [1] requires a WEC to 

achieve a Safety Level (SL) of 2, which corresponds to 

being designed to withstand a load that may statistically 

occur once every 50 years.  

Although overall guidance for the design process of a 

WEC can be sought from related industries such as 

offshore wind – see e.g. [2] to [6], and while noting that 

generic guidance for WEC design is also available in a 

shortlist of references – see e.g. [1], there is at present 

limited practical guidance on how to derive estimates of 

long-term return period loads. In particular, and while the 

use of extreme value distributions is suggested in multiple 

standards, only generic guidance is issued for the 

calculation of extreme loads, i.e. no specific, quantifiable 

method on how to select a specific distribution is 

discussed. For WEC design, recent work has highlighted 

the importance of addressing such gap in the design 

process: for example, a comparative assessment of 

different load estimation methods is documented in [7], 

illustrating the fundamental dependence of the output 

load estimates on the underlying method followed to 

derive them; additionally, and in connection with the 

assessment of extreme loads acting on WECs, the load 
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post-processing methodology was identified in [8] as a 

major contributor to the uncertainty in ULS load estimates. 

This paper aims to present a novel methodology that 

extends existing best practices by providing a practical 

method to assess the suitability of specific extreme value 

distributions when estimating extreme loads, in the 

context of the design of offshore structures. The novel 

methodology uses multiple goodness-of-fit tests to derive 

quantifiable metrics that support the assessment of the 

‘accuracy’ of extreme load estimates related to different 

extreme value distributions, eliminating the need to rely 

(solely) on methods based on visual inspection. The 

authors acknowledge the preliminary nature of the 

findings – noting further verification and validation are 

required to ensure that it can be adopted with confidence. 

Owing to the importance of the post-processing 

methodology in the overall uncertainty associated with 

ULS load estimates [8], the methodology presented in this 

paper solely addresses the influence of different extreme 

value distributions in the resulting load estimate; future 

work may address additional uncertainty sources, at e.g. 

pre-processing and processing levels. 

II. METHODOLOGY 

A. Extreme Load Analysis (ULS)  

There are multiple methods to estimate an extreme load 

in offshore structural design. These may include 

approaches based on e.g. short-term analysis, long-term 

analysis, contour-based methods, full-environmental 

characterisation, etc. In this paper, a short-term extreme 

response analysis method was followed, as illustrated in 

Fig. 1.  To apply the method, load time-series 𝐿(𝑡) were 

derived via a time-domain numerical model, using an 

Extreme Sea State (ESS) with 1-year return period (𝑇𝑅) as 

the main environmental input. The load peaks were 

extracted from 𝐿(𝑡)  and sorted in ascending order, to 

populate the dataset 𝒙 with the values 𝑥𝑖: 

 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑁}, 𝑖 = 1,2, … , 𝑁 (1) 

In (1), 𝑁 is the total number of load peaks. An empirical 

Cumulative Distribution Function (CDF), 𝒚 , was then 

calculated and its corresponding estimates, 𝑦𝑖 = 𝑦(𝑥𝑖) =
𝑖

𝑁
, 

were fitted with a statistical distribution, 𝐹𝑃(𝑥) , which 

represents the probability of one load peak being below a 

value of 𝑥 for the considered ESS. The probability that all 

load peaks are below a value 𝑥 during the same sea state 

can be estimated as: 

 𝐹𝐸(𝑥) = 𝐹𝑃(𝑥)𝑁 (2) 

In (2), and acknowledging that the selected input ESS 

has a 1-year return period, 𝐹𝐸(𝑥) can also be referred to as 

the ‘annual maximum distribution’. Finally, the extreme 

load associated to a return period 𝑇𝑅, 𝑥𝑇𝑅
, which physically 

represents a load threshold which has the probability of 

being exceeded once every 𝑇𝑅 years, can be estimated as: 

 𝑥𝑇𝑅
= 𝑥| {𝐹𝐸(𝑥) = 1 −

1

𝑇𝑅

} (3) 

If e.g. 𝑇𝑅 = 50  years, and following (3), the 50-year 

return load estimate, 𝑥50, is given by:  

 𝑥𝑇𝑅
= 𝑥|{𝐹𝐸(𝑥) = 0.98} (4) 

B. Selection of a ‘Suitable’ Distribution 

As illustrated in Fig. 1, the selection of a ‘suitable’ 

statistical distribution, 𝐹𝑃(𝑥) , is a critical step in the 

proposed methodology. The criticality of such step is 

discussed in e.g. [8], where the ULS load post-processing 

methodology was identified as the largest contributor to 

the load estimate uncertainty following a Probabilistic 

Variation Mode and Effects Analysis (P-VMEA) approach, 

accounting for over 84% of the total distribution of 

variance associated with all uncertainty sources.  

Despite the recognition of its importance in the overall 

uncertainty, existing standards provide only generic 

guidance on how to select a ‘suitable’ distribution. For 

example: 

 

• DNV-ST-0126 [2] and DNV-ST-0119 [3] refer to the 

consideration of “all (…) states that contribute to the 

upper-tail of the distribution of the annual maximum 

load”, i.e. 𝐹𝐸(𝑥) in (2), without specifying how such 

distribution may be selected.  

• IEC 61400-1 [4] states that “the distribution type 

selected should be checked to see if the fit to data is 

acceptable”, without suggesting a methodology to 

define / quantify ‘acceptability’. 

• DNV-RP-C205 [5] suggests “to use extreme estimates 

based on fitting of the tail of the peak distribution”, but 

no details on how to perform fitting are provided. 

• DNV-ST-0437 [6] makes reference to “load 

extrapolation methods”, without providing any 

further guidance.   
Fig. 1.  High-level breakdown of the original methodology applied 

to derive extreme load estimates. 
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In summary, and although relevant, available standards 

do not tend to specify which distribution / fitting function 

should be used when performing extreme load analysis, 

nor do these suggest quantifiable metrics to assess if a 

distribution is able to accurately represent the empirical 

data.  

A subjective evaluation approach based on visual 

inspection is often the result of such lack of practical 

guidance. To overcome such shortcomings, this paper 

investigates the use of goodness-of-fit tests to reduce the 

uncertainty in extreme load estimates. Specifically, 

goodness-of-fit tests are proposed as a means to assist in 

the selection of a ‘suitable’ distribution to fit the empirical 

load peaks, i.e. Step 4 in Fig.1 and Fig. 2. Although 

previous work, e.g. [7] and [9], investigated the suitability 

of different distributions by comparing extreme load 

estimates to those calculated via a block-maxima method, 

to the authors’ knowledge the present approach is the first 

to propose the evaluation of the accuracy of the fit via 

quantifiable metrics, eliminating, even if partially, a purely 

subjective evaluation criterion when defining and 

selecting a ‘suitable’ distribution.  

C. Goodness-of-Fit Tests 

Goodness-of-fit tests can be used to test the (null) 

hypothesis, referred to as 𝐻0, that a data sample 𝑥 can be 

associated with a specific distribution 𝐹𝑃(𝑥). For functions 

that are continuous and fully specified, Empirical 

Distribution Function (EDF) tests are a class of goodness-

of-fit statistics that may be considered – see e.g. [10].  

Four EDF tests were assessed in the present study. These 

are briefly described below, and include: 

• Kolmogorov-Smirnov.  

• Kuiper. 

• Cramer – Von Mises. 

• Anderson-Darling. 

The Kolmogorov-Smirnov test is based on the test 

statistic 𝐷: 

 𝐷 = max(𝐷+, 𝐷−), with: (5) 

 {

𝐷+ = sup
x

{𝑦 − 𝐹𝑃(𝑥)}

𝐷− = sup
x

{𝐹𝑃(𝑥) − 𝑦}
 (6) 

The metric 𝐷 therefore measures the maximum absolute 

distance between the empirical and the fit distributions.  

The Kuiper test is a modification of the Kolmogorov-

Smirnov test, and is based on the test statistic 𝑉: 

 𝑉 = 𝐷+ + 𝐷−  (7) 

The metric 𝑉 therefore accounts for the largest difference 

between the empirical data and the fit distribution, both 

when 𝑦 is larger than 𝐹𝑃(𝑥) and vice-versa. 

 

 

 

The Cramer – Von Mises test statistic, 𝑊2 , can be 

defined as: 

 𝑊2 = ∫ [𝐹𝑃(𝑥) − 𝑦]2𝑑𝐹𝑃(𝑥)
+∞

−∞

  (8) 

The test statistic 𝑊2 differs from 𝐷 and 𝑉 as it is based 

on an aggregate measure (i.e. integral) of a quadratic, 

rather than linear, distance between the empirical and the 

fit distributions. 

Finally, the Anderson – Darling test statistic, 𝐴2, can be 

defined as: 

 𝐴2 = 𝑁 ∫
[𝐹𝑃(𝑥) − 𝑦]2

𝐹𝑃(𝑥) [1 − 𝐹𝑃(𝑥)]
𝑑𝐹𝑃(𝑥)

+∞

−∞

  (9) 

Similarly to 𝑊2 , the test statistic 𝐴2 is based on an 

aggregate measure of a quadratic distance between the 

empirical data and the fitting function. Additionally, it 

gives more importance to the tails of the distribution, i.e. 

when the value of 𝐹𝑃(𝑥)  is close to either 0 or 1, the 

distance measurement is amplified. 

For practical applications, and following [10], (6), (8) 

and (9) can be rearranged via a Probability Integral 

Transformation (PIT) to obtain suitable computing 

formulas, as defined by (10), (11) and (12), respectively: 

 {
𝐷+ = max

1≤𝑖≤𝑁
[

𝑖

𝑁
− 𝐹𝑃(𝑥𝑖)]

𝐷− = max
1≤𝑖≤𝑁

[𝐹𝑃(𝑥𝑖) −
𝑖 − 1

𝑁
]

 (10) 

 𝑊2 =
1

12𝑁
+ ∑ [

2𝑖 − 1

2𝑁
−𝐹𝑃(𝑥𝑖)]

2𝑁

𝑖=1

  (11) 

 
𝐴2 = −𝑁 − ∑

(2𝑖 − 1)

𝑁

𝑁

𝑖=1

[ln 𝐹𝑃(𝑥𝑖)

+ ln(1 − 𝐹𝑃(𝑥𝑁+1−𝑖)]  

(12) 

 

In this study, goodness-of-fit-tests were incorporated 

into the methodology followed to derive extreme load 

estimates.  

 

TABLE I 

MAIN FEATURES OF THE SPD WEC – ADAPTED FROM [12] 

Parameter Unit Value 

Float Mass ton 35 

Float Diameter m 7 

Float Height m 5 

Nominal Float Submersion m 1.5 
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The combined process is illustrated in Fig. 2, where it is 

proposed to evaluate the suitability of a specific 

distribution 𝐹𝑃(𝑥) to fit the empirical peaks via goodness-

of-fit tests in Steps 4.1 to 4.3. 

As one of the hypotheses of goodness-of-fit testing is 

that distributions have to be fully specified, the evaluation 

of the test statistics detailed in (5) to (9) was based on a 

second empirical peak distribution, 𝑦𝑖
∗ = 𝑦(𝑥𝑖

∗)  (Step 4.1 in 

Fig. 2). The load peaks 𝑥𝑖
∗ , which are statistically 

independent of the 𝑥𝑖 series, were derived via additional 

simulations, where the same input sea state was 

considered with a different seed.  

The test statistic 𝑡 was then calculated and compared to 

a critical value, 𝑡𝑐, for a chosen level of significance 𝛼 (Step 

4.2 in Fig. 2). If 𝑡 < 𝑡𝑐, the test fails to reject the hypothesis 

𝐻0 and the extreme load may be estimated by following 

Steps 5 and 6 in Fig. 2; otherwise, additional measures shall 

be taken by e.g. selecting another distribution 𝐹𝑝(𝑥) , 

extracting an alternative subset of peaks, performing 

additional simulations to collect a higher number of peaks, 

etc. (Step 4.3 in Fig. 2). 

As an illustrative example, the methodology 

summarised in Fig. 2 was first applied to a dataset of load 

peaks generated from a reference model of a WEC. The 

model and the corresponding input settings are detailed in 

III. 

III. REFERENCE MODEL SETUP AND MAIN INPUT DATA 

A SPD WEC type device was considered in this study as 

a reference offshore structure. The design was inspired by 

the Bref-SHB device of the NumWEC project [11] - [12], 

and consists of a positively buoyant floater, submerged 

below the free-surface, tethered to the seabed (rigid link).  

In static conditions, the floater buoyancy is reacted by a 

pre-tensioning system. Under the action of waves, the 

floater moves in the water column and its motion provides 

input to a linear Power Take-Off (PTO) system – see Fig. 3. 

The main geometric features of the SPD WEC are 

summarised in Table I. 

The SPD WEC was modelled in WEC-Sim (Wave 

Energy Converter SIMulator), an open-source WEC 

simulation tool developed in MATLAB/Simulink using the 

multi-body dynamics solver SimMechanics. A schematic 

of the SPD WEC-Sim model is presented in Fig. 4. 

Hydrodynamic coefficients were calculated in Nemoh, a 

first-order Boundary Element Method (BEM) solver. 

Additionally, a Morison model was added to the 

formulation, based on the drag coefficients suggested in 

[11]. The simulations included the evaluation of nonlinear 

hydrostatic and nonlinear Froude-Krylov forces.  

The environmental inputs were limited to wave climate 

data, extracted from a 30-year hindcast compiled using the 

third-generation spectral wave model, WaveWatch III 

(WWIII). For illustrative purposes, the SPD WEC was 

assumed to be deployed off the coast of France (3.75W, 

48.83N), in a moderate wave energy climate around the 

20m water depth bathymetric contour. 

The response of the SPD WEC was simulated in a 

parked design situation, as defined in [1]. In this state, the 

PTO was assumed to be locked via the action of e.g. a 

mechanical brake, and the buoy lowered by 3m in the 

water column, bringing the submersion level to 4.5m.  

 
 

Fig. 2.  Revised methodology applied to derive extreme load 

estimates, including goodness-of-fit tests. 

 

 
Fig. 3.  Schematic of the SPD WEC, adapted from [12]. 

 

 
Fig. 4.  Schematic of the WEC-Sim model of the SPD WEC. 
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The 1-year return period ESS conditions used in the 

simulations are summarised in Table II in terms of 

significant wave height (𝐻𝑠), peak wave period (𝑇𝑝) and 

spectral shape. To define the ESS conditions from the 30-

year dataset, a 1-year return contour was derived 

following Principal Component Analysis (PCA) and the 

Inverse First-Order Reliability Method (I-FORM), as 

detailed in [13], using a modified version of the Extreme 

Sea State Contour module of the WEC Design Response 

Toolbox (WDRT).  

The sea state defined in Table II corresponds to that with 

the highest 𝐻𝑠 on the estimated 1-year return contour. 

IV. RESULTS 

A. Sample Load Time-Series 

For the model setup summarised in III, and as 

illustrated in Step 1 of Fig. 2, load time-series were 

obtained in WEC-Sim for specific locations across the WEC 

structure, namely for key bodies and structural joints. 

Following [1], 3-hour sea state representations were used 

as the main environmental input.  

As an illustrative example, the horizontal load at the 

foundation was analysed, i.e. the horizontal reaction force 

at ‘constraint(1)’ in Fig. 4. An example of the resulting load 

time-series and of the corresponding peaks is given in Fig. 

5. Both positive and negative load peaks were selected for 

the initial analysis.  

B. Extreme Value Analysis 

Having identified all the peaks from a given load time-

series, and following the guidance from e.g. [4], a 

threshold, 𝑥𝑇 , was set as a cut-off to exclude lower 

amplitude events. Such approach is based on the 

assumption that the physical processes that lead to long-

term extremes are related to those that produce maxima on 

the tail of the (original) short-term distribution – see e.g. 

[14]. The approach is also aligned with applicable 

recommended practices such as [5], which suggest 

focusing on the upper-tail of the peak distribution. 

Following [9], a threshold of 1.4 times the standard 

deviation above the mean of the force time-series was 

used, leading to 𝑥𝑇 = 294 kN. The influence of other 

threshold values may be investigated in future work. 

The CDF of the load peaks was then estimated, 

following (3) - Step 3 in Fig. 2. The values 𝑦𝑖  were fitted 

with a range of extreme value distributions, using the 

WDRT and the ScyPy Python library (version 1.7.3). The 

following distributions were considered: 

 

• Weibull (WEI). 

• Weibull Tail-Fit (WTF) [7]. 

• Gumbel (GUM). 

• Generalised Pareto (GP).  

• Generalised Extreme Value (GEV).  

 

Fig. 6 exemplifies the resulting distribution fits, with the 

𝑦𝑖  data represented by red crosses. To facilitate the 

assessment of the upper-tail fits, the y-axis is presented in 

logarithmic scale and the Complementary CDF (CCDF) 

values are reported, i.e. the probability of exceedance. 

Based solely on visual inspection, and following the 

current state-of-the-art approach illustrated in Fig. 1, the 

WEI, WTF and GP distributions would appear as good 

candidates, while the GUM and GEV distributions would 

be considered the least likely to be suitable. 

The impact of the different distribution fits is clearer 

when assessing the load estimates associated with the 

long-term return period, following (2) – see also Steps 5 

and 6 of Fig.2. For representative purposes, these steps 

were followed for the five tested distributions, and Fig. 7 

TABLE II 

SELECTED ESS CONDITIONS (1-YEAR RETURN PERIOD) 

Parameter Unit Value 

𝐻𝑠 m 7.67 

𝑇𝑝 s 15.96 

Spectral Shape - Pierson-Moskowitz 

 

 

 
Fig. 5.  Extract of a sample load time-series (black line) and peaks 

(red crosses): horizontal load at the foundation. 

 

 
Fig. 6.  Empirical CCDF of peaks for horizontal load at the 

foundation, 𝑦𝑖, and associated fitting distributions, 𝐹𝑃(𝑥𝑖). 
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illustrates the extreme distributions, 𝐹𝐸(𝑥) (dashed lines), 

alongside the peak distributions, 𝐹𝑃(𝑥) (continuous lines); 

the horizontal magenta line represents the 50-year return 

probability value.  

As expectable, it can be seen in Fig. 7 that extreme load 

estimates may significantly exceed (one-off, isolated) peak 

load estimates. Also, Fig. 7 illustrates that differences in 

peak distributions that appear to be minor (visually) may 

result in large differences between extreme distributions. 

Ultimately, such differences can be quantified via the 

evaluation of the 50-year return load estimates, 𝑥50, which 

are reported in Table III. 

As visible in Table III, the five tested distributions 

provide a wide range of estimates of the 50-year return 

load. Significant variations are present even for the WEI, 

WTF and GP related estimates, which emerged as ‘good 

candidates’ when following the visual inspection 

approach. Such variations emphasise the need of 

additional checks to provide robustness in the extreme 

load calculation process, to mitigate the resulting 

uncertainty and, where possible, avoid unnecessary 

under- or overdesign. 

C. Goodness-of-Fit Tests 

In order to perform the goodness-of-fit tests, a 

supplementary peaks dataset 𝑦𝑖
∗  was generated via 

additional simulation(s), with a different realisation (seed) 

for the same input sea state (as per Step 4.1 in Fig. 2). An 

example of the resulting estimates of 𝑦𝑖
∗  is illustrated in 

Fig. 8, where comparisons with the original load peaks 

dataset 𝑦𝑖  can be made. For clarity, the values 𝑦𝑖  (red 

crosses in Fig. 8) were used to define the parameters for the 

fitting distributions, while the values 𝑦𝑖
∗ (black crosses in 

Fig. 8) were used solely for goodness-of-fit testing (Step 4.2 

in Fig. 2).  

The test statistics 𝐷 , 𝑉 , 𝑊2 and 𝐴2  were calculated via 

the formulae detailed in II.C. Critical values for all the test 

statistics were selected from [9], for a significance level 

𝛼 = 5%, reported for completion in Table IV. Estimates of 

the test statistics associated with 𝑦𝑖
∗  and 𝐹𝑝(𝑥𝑖)  are 

presented in Table V (see also Fig. 9), where cells 

highlighted in grey show estimates that exceed the 

corresponding critical value(s). 

 

 

 

 

 
Fig. 7.  CCDF of extremes for horizontal load at the foundation, 

𝐹𝐸(𝑥) . The associated peak distributions, 𝐹𝑃(𝑥) , are presented as 

continuous lines (same colour coding). 

TABLE III 

ESTIMATES OF THE 50-YEAR HORIZONTAL LOAD AT THE FOUNDATION 

𝑥50 (kN) 

WEI WTF GUM GP GEV 

969 899 873 762 2,779 

 

TABLE IV 

CRITICAL VALUES FOR DIFFERENT TEST STATISTICS,  

AT 5% SIGNIFICANCE LEVEL [9] 

𝐷 𝑉 𝑊2 𝐴2 

1.358 1.747 0.461 2.492 

 

TABLE V 

ESTIMATED VALUES OF THE TEST STATISTICS ASSOCIATED WITH 𝐹𝑝(𝑥) 

Distribution 𝐷 𝑉 𝑊2 𝐴2 

WEI 0.822 1.476 0.136 1.480 

WTF 1.323 1.802 0.510 4.439 

GUM 1.951 3.103 0.983 6.220 

GP 0.509 0.836 0.034 0.396 

GEV 1.337 2.572 0.487 3.580 

 

 

 
Fig. 8. Empirical CCDFs of peaks for horizontal load at the 

foundation, 𝑦𝑖 and 𝑦𝑖
∗.    

 
Fig. 9.  Empirical CCDF of peaks for horizontal load at the 

foundation, 𝑦𝑖
∗, and associated fitting distributions, 𝐹𝑃(𝑥𝑖). 
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V. DISCUSSION 

The goodness-of-fit analysis presented in IV. C suggests 

that the hypothesis that the empirical peaks follow a GUM 

distribution is rejected by all tests, as the associated test 

statistics are consistently above the respective critical 

values. Such finding is aligned with what a visual 

inspection could have concluded, considering that the 

GUM function provides a poor visual fit (see e.g. Fig. 9). 

Similarly to what is observed for the GUM distribution, a 

visual inspection would have likely excluded the use of a 

GEV distribution. The hypothesis that the peaks follow a 

GEV distribution is rejected by all tests except the 

Kolmogorov – Smirnov test, noting however that the 

calculated test statistic is very close to the critical value.  

Importantly, all tests except the Kolmogorov – Smirnov 

test reject the hypothesis that the peaks are well 

represented by a WTF distribution. This is somewhat in 

disagreement with what a visual inspection could have 

indicated, when observing e.g. Fig 6 and Fig. 9. The 

rejection of the WTF distribution is possibly related to the 

performance at the lower-tail and / or the central part of 

the distribution; this hypothesis can be investigated, for 

example for the Cramer – Von Mises test, by introducing a 

variable 𝜔(𝑥𝑖
∗) which can be defined as: 

 𝜔(𝑥𝑖
∗) = (𝐹𝑃(𝑥𝑖

∗) −
2𝑖 − 1

2𝑛
)

2

  (13) 

Fig. 10 illustrates estimates of 𝜔(𝑥𝑖
∗) for all the tested 

distributions. It is clear from Fig. 10 that for the WTF, the 

highest values of 𝜔(𝑥𝑖
∗) are associated with the lower tail 

of the distribution, corroborating the hypothesis that the 

WTF distribution was rejected mainly due to the poor 

agreement in the lower tail (for the Cramer – Von Mises 

test; for the Anderson – Darling test, emphasis in the 

quality of the fit at both tails is given). Similar conclusions 

apply to the GUM and GEV distributions.  

Following the analysis of the results shown in Table V, 

the WEI and GP distributions are the only ones for which 

all the test statistics estimates are below the respective 

critical values. Such finding is consistent with what a 

visual inspection could have concluded, i.e. both 

distributions provide a good visual fit to the empirical 

observations. When considering the WEI and the GP 

distributions, and building on the results of the goodness-

of-fit tests, the GP distribution may be considered as the 

most suitable, noting it can be consistently associated with 

the lowest test statistic estimates (and therefore a higher 

probability that the tested hypothesis is ‘true’).  

Consequently, the most reliable / ‘accurate’ estimate of 

the 50-year return load is likely to be 𝑥50 =762kN. The 

WTF distribution, which provided a good visual fit but 

was rejected by goodness-of-fit testing, would have 

returned an extreme load estimate of 899kN - 18% higher 

than that calculated via a GP distribution. The WEI 

distribution, which passed the goodness-of-tests yet 

provided test statistics closer to the critical value(s) than 

those of the GP distribution, would have resulted in an 

extreme load estimate of 969kN - 27% higher than that 

calculated via a GP distribution.  

Overall, this study suggests that, as a minimum, a visual 

inspection approach should be accompanied by goodness-

of-fit testing to provide additional robustness to the 

extreme load analysis process. In addition, goodness-of-fit 

testing may be used to downselect from a group of 

preliminary suitable distributions, when two (or more) 

appear to be good candidates based on visual inspection 

only. Finally, and based on the definitions introduced in 

II.C, it is noted that the Kolmogorov – Smirnov test (via the 

statistic 𝐷) and the Kuiper test (via the statistic 𝑉) are less 

likely to be the most appropriate tests, as such tests rely on 

a point-measure which may be biased by e.g. influential 

observers. For example, the value of 𝐷  for the WTF 

distribution is similar to that for the GEV distribution (see 

Table V), although the GEV distribution appears to 

perform significantly worse than the WTF distribution, 

based on both visual inspection and the other test statistics. 

The Cramer – Von Mises and Anderson – Darling tests are 

likely to provide a higher degree of robustness, being 

based on a quadratic distance across the entire 

distribution. The Anderson – Darling test has the potential 

to emphasise fit quality at the upper-tail; however, this is 

somewhat balanced by equal emphasis being given to the 

lower tail. 

VI. CONCLUSIONS 

A. Summary of the Key Findings 

This paper presented a novel methodology, based on 

goodness-of-fit statistics, to reduce uncertainty in the 

evaluation of extreme loads acting on an offshore 

structure. Four goodness-of-fit tests were introduced: 

Kolmogorov – Smirnov, Kuiper, Cramer – Von Mises and 

Anderson – Darling. As an example, the tests were applied 

to evaluate the capability of Weibull, Weibull Tail-Fit, 

Generalised Extreme Value, Gumbel and Generalised 

Pareto distributions to estimate the extreme horizontal 
 

Fig. 10.  Estimates of 𝜔𝑖
∗ for the tested distributions. 
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load acting on the foundation of a reference WEC, in a 

parked design situation. 

The main finding of this paper suggests that selecting a 

load peak distribution solely via visual inspection may 

lead to selecting a distribution which is not statistically 

representative of the empirical data, which in turn is likely 

to lead to unrealistic estimates of extreme loads. For the 

sample case analysed in this paper, selecting the extreme 

distribution for the horizontal load at the WEC foundation 

solely via visual inspection may have led to overestimating 

the 50-year return load by up to 27%. Therefore, goodness-

of-fit tests are suggested as (at least) an add-on to visual 

inspection, to ensure that the load analysis process is more 

robust. The preliminary results indicate that the Cramer – 

Von Mises and Anderson – Darling tests may be more 

suitable than the Kolmogorov – Smirnov and Kuiper tests, 

as these are based on a quadratic distance across the entire 

range of data, rather than on single-point observations. 

Finally, and although numerically derived load time-series 

were used in this study, it is noted that the methodology is 

also applicable to physically derived load time-series. 

B. Potential Future Work 

Future work may focus on increasing the robustness of 

the presented methodology. This may include e.g. 

adapting statistical tests to the upper-tail of a distribution 

only; evaluating how results are affected by the number of 

available empirical load peaks, which can be related to the 

number of simulations performed and / or their duration, 

and by assessing the influence of different threshold value 

𝑥𝑇 , potentially setting it based on other measures of 

dispersion (e.g. Interquartile Range, IQR). Application of 

the methodology to other load sources and other design 

situations, simulated via either numerical or physical 

models, for multiple types of offshore structures, is also 

suggested as a next step – to stimulate the adoption of the 

methodology in a transition to a (more) probabilistic 

orientated design process. 

Future work may also address the influence of the type 

of extreme value analysis method that is applied. The 

authors acknowledge that other methods may be followed 

when estimating extreme loads. For example, and from [7], 

the block-maxima method may provide extreme load 

estimates without fitting the load peaks with a specific 

distribution; when following a contour-based approach, 

pre-processing uncertainty is also introduced given the 

dependence on the method followed to generate the 

contours – see e.g. [15]; the contour followed prior to the 

extrapolation for the long-term period estimation also 

introduces a source of uncertainty, as e.g. nonlinearities 

may affect the structural response differently at different 

temporal and physical scales; and methods based on full 

environmental characterisation, which involve a large 

number of input sea states, aim to mitigate the dependence 

of the load estimate on a the data points along a contour. 

However, and when compared to the methodology 

described in this paper, some of the alternative methods 

often require an increased computational effort, which 

may not be compatible with earlier design stages, namely 

in the transition from concept to detailed design.  
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