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Analysis of Mutriku’s OWC performance
Isabel Casas, Jon Lekube

Abstract—An analysis of oscillating water columns
(OWC) at the Mutriku Wave Power Plant to understand
their efficiency in transforming ocean energy into electric-
ity. The study aims to estimate the rate of convergence of
wave energy flux to kilowatts hour of each OWC and deter-
mine whether it is more accurate to estimate for each OWC
independently or as part of a system of equations. The
dataset includes electricity production data from 7 turbines
in the MWPP during 2019, along with ocean measurements
such as significant wave height, wave period, wave energy
flux, swell direction, and wind direction. All models in
the paper have varying coefficients which change with the
significant wave height. The methodology includes the use
of generalized least squares and local polynomial kernel
methodologies for coefficient estimation.

Index Terms—Mutriku Wave Power Plant, Functional
coefficient SURE, OWC performance

I. INTRODUCTION

OUR planet faces an urgent climate crisis and
requires immediate action. The fundamental

change to overcome the climate crisis is to reach a net
zero, which requires a paradigm shift in our economy,
moving from fossil fuel to renewable energy sources,
from an extractive to a circular economy, and from a
global to a local economy. The main objective of the
current article is to contribute to settling wave power
plants as renewable energy alternatives. With this goal
in mind, we compare several statistical models to anal-
yse the functioning of each oscillating water column
(OWC) at the Mutriku Wave Power Plant (MWPP).
In particular, we are interested in understanding how
efficiently each OWC transforms ocean energy into
electricity. This information is essential to maintain the
plant in good working condition.

Despite the strong potential for developing wave
power plants, only a few hundred kW of wave en-
ergy are commercialised globally, compared to GW
of offshore wind. Among these, the MWPP has been
functioning commercially since July 2011 [1], [2]. Today,
the Ente Vasco de Energı́a (EVE) manages the MWPP
and outsources its electricity trading in the Iberian
Electricity Market. Although the MWPP does not have
the latest wave converters, the availability of its pro-
duction data from several turbines and years makes
it a perfect candidate for this project. Specifically, the
MWPP production data from 7 turbines during 2019
will be analysed.

There is a vast literature analysing the performance
of OWC where their efficiency and power are analysed
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in experimental conditions such as in [3] and [4].
Analysing their performance with real production data
from the OWC is less frequent due to the limited avail-
ability of data from commercial wave power plants. In
this paper, we use stochastic models to measure the
performance of seven OWCs and obtain their conver-
sion rate from WEF to electricity production.

It is important for wave power plant operators to
continually monitor and optimise the performance of
individual OWCs to ensure the highest possible corre-
lation in their production levels under varying ocean
conditions. The main statistical question in this paper is
whether it is more accurate to estimate the production
of each OWC in an independent equation or as part
of a system of equations. Both cases can be put into
the context of seemingly unrelated equations (SURE).
Equations in this system might not be directly related
but can indirectly influence each other. The potential
interdependencies among the equations are considered
when estimating the parameters. In any case, we as-
sume that the coefficients may vary depending on the
significant wave height.

In this paper, we first describe the dataset and the
methodology in Section II. Section III presents the
empirical results. Finally, Section IV summarises the
results.

II. DATA AND METHODOLOGY

A. Data

This project originally had access to electricity pro-
duction from 12 turbines, i.e. from Turbines 2-8 and
10-15 of the Mutriku Wave Power Plant (MWPP). The
number of kilowatts of nominal power is positive when
the turbo generator produces more electricity than it
spends and negative when the turbo-generator acts as
a motor to maintain the minimum rotation speed so
the turbine does not stall. Nominal power is recorded
every half a second: its average over one hour is the
energy production of that hour (i.e., we denote the
dependent variable at hour t of turbine k by kWhkt.
The predictors are ocean measurements correspond-
ing to the SIMAR point number 3172032, closest to
Mutriku and operated by Puertos del Estado (Spain’s
State Ports). Specifically, the ocean variables used are
the significant wave height (Ht), wave period (Tt),
wave energy flux (WEFt), swell direction (SwellDirt),
and wind direction (WindDirt). Puertos del Estado
uses the WAM model to predict ocean variables at each
SIMAR point from values at the Bilbao Buoy and the
HARMONIE-AROME model to predict wind variables.
The wave energy flux (WEF) at time t is calculated
by WEFt = ρg2

64πH
2
t Tt = 0.491H2

t Tt, where g is the
acceleration due to gravity and ρ is the water density.
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Fig. 1. production of the MWPP turbines that only functioned during
part of the period.

Fig. 2. production of the MWPP turbines that functioned during the
whole period.

Missing values of kWh are replaced using the 10-
nearest-neighbor algorithm [5], which does not depend
on the data time structure. The study period is from the
1st of January 2019 until the 31st of December 2019. In
total, we have 8,616 data points.

Unfortunately, some turbines did not function for
long periods in 2019. Turbine 6 was off during 2019,
and Turbines 4, 5, 10, 11, and 15 only worked for half
of 2019; see Figure 2. However, Turbines 2, 3, 7, 8, 13
and 14 produced electricity consistently throughout the
year (see Figure 1), and we analyse their production in
this study.

B. Methodology
In this section, we analyse the expected conversion

rate from WEF to energy of OWCs at MWPP to under-
stand the efficiency of this plant and estimate the plant
production. We accomplish this by treating energy pro-
duction as the dependent variable and analysing the
influence of various ocean conditions as explanatory
factors.

1) Comparing OWCs production: All OWCs in the
plant share the same ocean site. In a well-designed
and maintained plant, we expect energy production be-
tween OWCs to be highly correlated. This information
is included in the variance-covariance matrix, Σt(zt).
We assume that this correlation varies depending on a
random variable zt, which in our case is the significant
wave height (Ht). The varying variance-covariance
matrix is estimated nonparametrically. Given a random
process yi = (yi1, . . . , yiT )

⊤, such that E(yit) = 0 and
E(yityi′t′) = σii′t if t = t′ and zero otherwise. Given
that Σt is locally stationary, its local linear estimator is
defined by

vech(Σ̃t) =

T∑
j=1

vech(y⊤j yj)Kh(zj − zt)
s2 − s1 (τ − t)

s0s2 − s21
(1)

where si =
∑T

j=1(zt−zj)
jKb(zt−zj) for i = 0, 1, 2. Note

that a single bandwidth is used for all co-movements,
which ensures that Σ̃t is positive definite.

2) Comparing OWCs conversion rate: We employ
the functional coefficients SURE (FCSURE) to model
MWPP production. It is a system of regressions whose
coefficients depend on the significant wave height,
which ensures the system’s nonlinearity. Each equation
explains the electricity production of one OWC, whose
production may or may not be correlated to the other
OWCs’ production. The equation of the FCSURE is
expressed by:

kWh2t =β0,2(zt) + β1,2(zt) WEFt+
m∑
j=2

βj,2 Xjt + u2t

...
kWh13t =β0,13(zt) + β1,13(zt) WEFt+

m∑
j=2

βj,13 Xjt + u13t

kWh14t =β0,14(zt) + β1,14(zt) WEFt+
m∑
j=2

βj,14 Xjt + u14t, (2)

The coefficients β(zt)1,k represent the relationship be-
tween the WEF at a given time t and the production
of Turbine k. This is the quantity that we define as
the rate of conversion because it represents the rate of
change in energy production given the change of 1 unit
in WEF. The conversion rate is an unknown function of
a random variable zt, which, in our problem as before,
is the significant weight height (Ht). This means that
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the rate of conversion might not only be different for
different OWCs but also for different values of Ht.
The rest of the coefficients, βj,k(zt) with j = 2, . . . ,m,
represent the relationships between the ocean vari-
ables, Xt, and the electricity production, kWhkt. The
error vector, Ut = (u1t, . . . , ukt) has variance-covariance
matrix E(UtU

⊤
t ) = Σt that may be also a function of

Ht. Σt represents the interdependencies between the
different OWCs production.

The estimation of (2) may be done separately for
each equation as if there is no correlation in the error
term across equations, Sigmat is the identity matrix
for every Ht. In this case, coefficient estimates are ob-
tained by combining the ordinary least squares (OLS)
and the local polynomial kernel estimator, extensively
studied in [6]. Roughly, these methodologies fit a set
of weighted local regressions with an optimally chosen
window size. The size of these windows is given
by the bandwidth bi, and the weights are given by
Kbi(zt − z) = b−1

i K( zt−z
bi

), for a kernel function K(·).
The local linear estimator general expression is:(

β̂i(zt)

β̂
(1)
i (zt)

)
=

(
ST,0(zt) S⊤

T,1(zt)

ST,1(zt) ST,2(zt)

)−1(
TT,0(zt)
TT,1(zt)

)
(3)

with

ST,s(zt) =
1

T

T∑
i=1

X⊤
i Xi(zi − zt)

sK

(
zi − zt

bi

)
(4)

TT,s(zt) =
1

T

T∑
i=1

X⊤
i (zi − zt)

sK

(
zi − zt

bi

)
yi (5)

and s = 0, 1, 2. We denote (3), the functional coefficients
OLS (FCOLS) estimator.

Assuming interdependency between the production
of all OWCs because they share the same ocean site,
Σt is used in the estimation of (6), generating the func-
tional coefficients generalised least squares (FCGLS)
estimator. The expression of the FCGLS is the same
as in (3), but its terms include the covariance matrix:

ST,s(zt) =
1

T

T∑
i=1

X⊤
i K

1/2
B,itΣ

−1
i K

1/2
B,itXi(Zi − zt)

s

TT,s(zt) =
1

T

T∑
i=1

X⊤
i K

1/2
B,itΣ

−1
i K

1/2
B,itYi(Zi − zt)

s, (6)

where KB,it = diag(Kb1,it, ...,KbN ,it) and Kbi,it =
(Tbi)

−1K((Zi − zt)/(Tbi)) is the matrix of weights
introducing smoothness according to the vector of
bandwidths, B = (b1, . . . , bN )⊤.

The FCGLS assumes that Σt is known. In practice,
this is unlikely and must be estimated as we explained
above.

3) Forecasting plant production: When the study’s
main objective is to understand the plant’s production
process, often knowing the production one hour ago
gives an accurate estimation of current production.
Adding lagged terms of production to (2) that carry
this information produces the following model:

kWh2t =β0,2(zt) + β1,2(zt) WEFt +

m∑
j=2

βj,2 Xjt+

p∑
k=1

δk,2(zt) kWh2,t−k + u2t

...

kWh13t =β0,13(zt) + β1,13(zt) WEFt +

m∑
j=2

βj,13 Xjt+

p∑
k=1

δk,14(zt) kWh14,t−k + u13t

kWh14t =β0,14(zt) + β1,14(zt) WEFt +

m∑
j=2

βj,14 Xjt+

p∑
k=1

δk,14(zt) kWh15,t−k + u14t. (7)

Coefficients δkj(·) represent the relationships between
lagged production and current production. In our
study, we use only one lag (p=1). We denote this
model as the functional coefficient vector autoregres-
sive model, FCVAR(1)—H, whose estimation is done
with the FCOLS.

III. EMPIRICAL RESULTS

A. Comparing OWCs production

Analysing the correlation between all OWCs in
MWPP can provide valuable insights into the plant’s
functioning and performance. If the correlation is high,
the devices react similarly to ocean conditions, showing
a good design and consistent plant maintenance. How-
ever, if the correlation is low, showing the differences in
performance between several OWCs might indicate a
possible design or operational flaw. We expect a strong
correlation between the production of all OWCs in
our analysis. We also expect a different correlation for
different ocean conditions. In particular, we expect a
different correlation value for different significant wave
heights.

Fig. III-A shows that the correlation between the
production of Turbine 13 and the other MWPP turbines
is close to one for small waves and decreases to 0.2
for bigger ones. This behaviour change might happen
because Turbine 13 is more or less efficient than the
rest at converting ocean energy to electricity for large
waves.

We see the varying correlation between the produc-
tion of Turbine 2 and the other turbines in Fig. III-A.
The correlation has value one between the production
of Turbines 2 and 4, independently of the wave height.
These two turbines are placed near each other in the
plant, which might explain their similar performance.
However, other factors should be involved in their
equal performance because the correlation between the
production of Turbines 2 and 3 is one for waves up
to 1.5 m but decreases to 0.4 for higher waves. Similar
behaviour appears between the production of Turbines
2 and 8.
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Fig. 3. Varying correlation between Turbine 13 and the other
turbines.

Fig. 4. Varying correlation between Turbine 2 and the other turbines.

The correlations between the production of Turbine 4
and the other turbines in Fig. III-A vary, having values
close to 1 for small wave heights and decreasing as the
wave height increases.

In summary, electricity production of all OWC for
small waves is highly correlated, and this correla-
tion decreases quickly for larger waves. This shows
a difference in the behaviour of OWC at MWPP for
different ocean conditions, which indicates the need
to consider this information when we analyse each
OWC’s conversion rate.

Fig. 5. Varying correlation between Turbine 4 and the other turbines.

B. Comparing OWCs conversion rate

We are interested in the coefficient of the WEF for
each OWC. It represents the conversion rate of WEF
into electricity. Optimally, all OWCs have the same
conversion rate, indicating a well-designed and con-
sistently maintained plant. Fig. III-B shows the con-
version rate of WEF into kWh for each turbine in the
analysis. The blue line is the conversion rate estimated
by the FCOLS not considering the interdependencies
of all OWCs’ production. The black line is the con-
version rate estimate by the FCFGLS, which uses a
non-parametric estimate of Σt to link the production
of every OWC in the system. Fig. III-B shows that
the OWCs are more efficient in converting WEF into
energy for smaller than larger waves. Second, there are
apparent differences between the FCOLS and FCFGLS
conversion rate estimates for turbines 7-14 and small
waves. The FCOLS conversion rate estimates are about
double the FCFGLS conversion rate estimates for those
turbines and small waves. Thus, the FCOLS describes
a picture in which Turbines 2-4 are less efficient than
Turbines 7-14, while the FCFGLS estimates are roughly
the same for all turbines. The FCFGLS estimates say
that keeping all other conditions equal, we can expect
an increase of 0.4 kWh in energy production for every
additional 1 kW/m of WEF for every turbine and
small waves. This rate decreases almost linearly until
3 m waves when the conversion rate is zero.

C. Forecasting plant production

Each OWC at Mutriku has an electrical generator of
18.5 kW. Therefore, the seven turbines in our study
yield 129.5 kW. In 2019, its annual generation was
193579.3 kWh during 8616 hours, leading to a capacity
factor of 17.35%. In comparison, the FCOLS estimated
a capacity factor of 17.39%, the FCFGLS of 17.33% and
the FCVAR(1) estimated a capacity factor of 17.34%.
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Fig. 6. Estimation of conversion rate of WEF into kWh for each
turbine in the analysis. There are differences in the conversion rate
estimation between Turbines 2-4 and Turbines 7-14 when using
the FCOLS. Not considering the interdependencies between OWCs’
production in the estimation model suggests that turbines 7-14 are
more efficient than turbines 2-4 at converting ocean energy.

TABLE I
PRODUCTION ESTIMATION PERFORMANCE
OF THE THREE MODELS IN OUR ANALYSIS.

capacity factor MSE MAE
FCOLS 17.39 27.69 9.42
FCFGLS 17.33 38.22 9.63
FCVAR(1) 17.34 3.94 2.44

The FCVAR(1) also has the smallest mean squared and
mean absolute error of the three models (see Table
III-C). So, we suggest the use of lagged production
values to estimate production.

Fig. III-C displays the coefficient estimates of
kWht−1 for all OWCs from (7). As expected, these
coefficients are almost constant and close to one, mean-
ing these relationships are the same for every ocean
condition. However, we see a discrepancy in this result
for Turbines 4 and 8, whose relationship between the
one-hour ago and current production decreases rapidly
as the significant wave height increases. We do not
have any answers for this erratic behaviour, and a
deeper investigation is needed on the functioning of
these two turbines in 2019.

IV. CONCLUSIONS

This paper aims to model a system of OWC that
conforms to a wave power plant. The easiest way
is to model them independently, and we show that
this approach can produce biased estimates of the
conversion rate when there is a correlation between
all OWC production. We propose using a system of
equations linked by their variance-covariance matrix
to correct this bias. Results from the seven MWPP’s
OWCs during 2019 in our dataset show that they all

Fig. 7. Estimation of relationship between kWht and kWht−1

for each OWC. We see a constant relationship for most OWC
independently of the wave height. However, Turbines 4 and 8 behave
differently.

function similarly, having their most significant con-
vergence rate for small waves.

On the other hand, we propose to use autoregressive
terms when the aim is to model the production process.
In this case, the focus is not on knowing how the
OWC is functioning at different ocean conditions but
on getting an accurate estimation of the whole plant
production, and autoregressive terms carry most of this
information.
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